• 刘志讲席教授


    刘志,大科学中心主任、讲席教授 

    毕业于北京大学地球物理系/物理系,美国斯坦福大学获电子工程硕士与物理学博士。2005 年后在斯坦福大学和斯坦福线性加速器中心担任助理研究员,2007 年起在美国劳伦斯伯克利国家实验室先后担任Staff Scientist,Career Staff Scientist,主持原位光电子能谱研究工作。SCI期刊上发表论文170多篇,引用4700余次。现任上海科技大学大科学中心主任;上海科技大学、中科院上海微系统研究所、上海光源国家科学中心学术委员会委员;任Scientific Reports等杂志的编委;现主持国家重大科技基础设施“活细胞结构与功能成像等线站工程”和国家重大科研仪器设备研制专项“基于上海同步辐射光源的能源环境新材料原位电子结构综合研究平台(SiP•ME2)研制”。





    研究介绍
    主要从事同步辐射谱学及其他相关技术的应用研究。特别是利用近常压光电子能谱对材料表界面的原位表征测量。

    课程教学

    承担《光子科学及其在表面科学中的应用》的教学任务。

    2014-2016 《同步辐射及其在表面科学中的应用》 2学分

    2017《光子科学及其在表面科学中的应用》 3学分


    发表文章
    近期部分科研成果(*通讯作者或共同通讯作者):
    1.Zhu, Y. F. et al. Role of Manganese Oxide in Syngas Conversion to Light Olefins. ACS Catal. 7, 2800-2804, doi:10.1021/acscatal.7b00221 (2017).
    2.* Mao, B.-H. et al. In situ study of the electronic structure of atomic layer deposited oxide ultrathin films upon oxygen adsorption using ambient pressure XPS. Catalysis Science & Technology 6, 6778-6783, doi:10.1039/c6cy00575f (2016).
    3.* Favaro, M. et al. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface. Nature Communications 7, doi:10.1038/ncomms12695 (2016).
    4.* Eriksson, S. K. et al. In-Situ Probing of H2O Effects on a Ru-Complex Adsorbed on TiO2 Using Ambient Pressure Photoelectron Spectroscopy. Topics in Catalysis 59, 583-590, doi:10.1007/s11244-015-0533-3 (2016).
    5.* Bernardi, F. et al. Control of the surface atomic population of Rh0.5Pd0.5 bimetallic nanoparticles supported on CeO2. Catal. Today 260, 95-99, doi:10.1016/j.cattod.2015.06.024 (2016).
    6.Zhang, Y. et al. Hexagonal Boron Nitride Cover on Pt(111): A New Route to Tune Molecule-Metal Interaction and Metal-Catalyzed Reactions. Nano Lett. 15, 3616-3623, doi:10.1021/acs.nanolett.5b01205 (2015).
    7.* Lichterman, M. F. et al. Direct observation of the energetics at a semiconductor/liquid junction by operando X-ray photoelectron spectroscopy. Energy Environ. Sci. 8, 2409-2416, doi:10.1039/c5ee01014d (2015).
    8.* Karslioglu, O. et al. Aqueous solution/metal interfaces investigated in operando by photoelectron spectroscopy. Faraday Discussions 180, 35-53, doi:10.1039/c5fd00003c (2015).
    9.* Crumlin, E. J. et al. X-ray spectroscopy of energy materials under in situ/operando conditions. Journal of Electron Spectroscopy and Related Phenomena 200, 264-273, doi:10.1016/j.elspec.2015.06.008 (2015).
    10.* Axnanda, S. et al. Using Tender X-ray Ambient Pressure X-Ray Photoelectron Spectroscopy as A Direct Probe of Solid-Liquid Interface. Scientific Reports 5, doi:10.1038/srep09788 (2015).
    11.* Mao, B.-H. et al. A near ambient pressure XPS study of subnanometer silver clusters on Al2O3 and TiO2 ultrathin film supports. Physical Chemistry Chemical Physics 16, 26645-26652, doi:10.1039/c4cp02325k (2014).
    12.* Liu, X., Yang, W. & Liu, Z. Recent Progress on Synchrotron-Based In-Situ Soft X-ray Spectroscopy for Energy Materials. Advanced Materials 26, 7710-7729, doi:10.1002/adma.201304676 (2014).
    13.* Yu, Y. et al. CO2 activation and carbonate intermediates: an operando AP-XPS study of CO2 electrolysis reactions on solid oxide electrochemical cells. Physical Chemistry Chemical Physics 16, 11633-11639, doi:10.1039/c4cp01054j (2014).
    14.Yao, Y. et al. Graphene cover-promoted metal-catalyzed reactions. Proceedings of the National Academy of Sciences of the United States of America 111, 17023-17028, doi:10.1073/pnas.1416368111 (2014).
    15.Scheele, M. et al. PbS Nanoparticles Capped with Tetrathiafulvalenetetracarboxylate: Utilizing Energy Level Alignment for Efficient Carrier Transport. Acs Nano 8, 2532-2540, doi:10.1021/nn406127s (2014).
    16.* Dejoie, C. et al. Learning from the past: Rare epsilon-Fe2O3 in the ancient black-glazed Jian (Tenmoku) wares. Scientific Reports 4, doi:10.1038/srep04941 (2014).
    17.* Axnanda, S. et al. In Situ Characterizations of Nanostructured SnOx/Pt(111) Surfaces Using Ambient-Pressure XPS (APXPS) and High-Pressure Scanning Tunneling Microscopy (HPSTM). Journal of Physical Chemistry C 118, 1935-1943, doi:10.1021/jp409272j (2014).
    18.Zhu, Z. et al. Structure and Chemical State of the Pt(557) Surface during Hydrogen Oxidation Reaction Studied by in Situ Scanning Tunneling Microscopy and X-ray Photoelectron Spectroscopy. Journal of the American Chemical Society 135, 12560-12563, doi:10.1021/ja406497s (2013).
    19.* Zhang, C. et al. Mechanistic Studies of Water Electrolysis and Hydrogen Electro-Oxidation on High Temperature Ceria-Based Solid Oxide Electrochemical Cells. Journal of the American Chemical Society 135, 11572-11579, doi:10.1021/ja402604u (2013).
    20.Starr, D. E., Liu, Z., Haevecker, M., Knop-Gericke, A. & Bluhm, H. Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy. Chemical Society Reviews 42, 5833-5857, doi:10.1039/c3cs60057b (2013).
    21.* Mao, B.-H. et al. In situ characterization of catalytic activity of graphene stabilized small-sized Pd nanoparticles for CO oxidation. Applied Surface Science 283, 1076-1079, doi:10.1016/j.apsusc.2013.07.078 (2013).
    22.* Mao, B.-H. et al. Oxidation and reduction of size-selected subnanometer Pd clusters on Al2O3 surface. Journal of Chemical Physics 138, doi:10.1063/1.4807488 (2013).
    23.* Yu, Y. et al. Carbon deposits and Pt/YSZ overpotentials in CO/CO 2 solid oxide electrochemical cells. ECS Transactions 57, 3119-3126, doi:10.1149/05701.3119ecst (2013).Liu, X. et al. Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray spectroscopy. Nature Communications 4, doi:10.1038/ncomms3568 (2013).
    24.* Axnanda, S. et al. Direct Work Function Measurement by Gas Phase Photoelectron Spectroscopy and Its Application on PbS Nanoparticles. Nano Lett. 13, 6176-6182, doi:10.1021/nl403524a (2013).
    25.Butcher, D. R. et al. Mobility on the reconstructed Pt(100)-hex surface in ethylene and in its mixture with hydrogen and carbon monoxide. Chemical Communications 49, 6903-6905, doi:10.1039/c3cc42312c (2013).
    26.* Crumlin, E. J., Bluhm, H. & Liu, Z. In situ investigation of electrochemical devices using ambient pressure photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena 190, 84-92, doi:10.1016/j.elspec.2013.03.002 (2013).
    27.Chen, X. et al. Properties of Disorder-Engineered Black Titanium Dioxide Nanoparticles through Hydrogenation. Scientific Reports 3, doi:10.1038/srep01510 (2013).
    28.Blomberg, S. et al. In Situ X-Ray Photoelectron Spectroscopy of Model Catalysts: At the Edge of the Gap. Phys. Rev. Lett. 110, doi:10.1103/PhysRevLett.110.117601 (2013).

    本组成员



    liuzhi@shanghaitech.edu.cn
  • 江怀东教授

    江怀东课题组介绍


    课题组长
    江怀东,正教授
    通讯地址:6号楼202D
    电子邮件:jianghd@@shanghaitech.edu.cn 
    1998年,毕业于济南大学,获得材料学学士学位
    2003年,毕业于山东大学晶体材料国家重点实验室,获材料学博士学位
    2002年至2005年,在新加坡国立大学物理系先后从事研究助理和博士后研究
    2006年至2010年,在美国加州大学洛杉矶分校物理与天文系从事博士后研究和助理研究教授
    2010年至2016年,在山东大学任教授
    2016年9月加入上海科技大学物质科学与技术学院任教授

    研究介绍

    课题组主要从事基于X射线自由激光、同步辐射光源和电子显微镜的高分辨定量成像及相关研究。具体研究方向包括:

    (1)相干衍射成像新技术和新方法探索;

    (2)X射线与电镜三维高分辨显微成像与应用;

    (3)功能材料的制备、微观结构及机理研究;

    (4)X射线自由电子激光装置建设


    发表文章

    Selected Publications

    1. Z. Dong#, E. Zhang#, Y. Jiang, Q. Zhang, A. Mayoral, H. Jiang*, Y. Ma*. “Atomic-level imaging of zeolite local structures using electron ptychography”, J. Am. Chem. Soc. 145, 6628-6632 (2023).

    2. Z. Y. Du, Z. S. He, J. D. Fan, Y. G. Huo, B. He, Y. R. Wang, Q. Q. Sun, W. C. Niu, W. C. Zhao, L. N. Zhao, P. Cao, K. Cao, D. F. Xia, Q. Yuan, X. J. Liang, H. D. Jiang*, Y. Gong*, X. Y. Gao*, “Au4 cluster inhibits human thioredoxin reductase activity via specifically binding of Au to Cys189”, Nano Today 47, 101686 (2022).

    3. J. Fan, Y. Tong, Y. Nie, Z. Gao, B. He, H. Luan, D. Lu, J. Zhang, D. Zhang, X. Yuan, J. Chen, Z. Guo, T. Liu, M. Zhang, C. Feng, H. Deng, B. Liu, Z. Zhao, Z. Liu, H. Jiang*, “First commissioning results of the coherent scattering and imaging endstation at the Shanghai soft X-ray free-electron laser facility”, Nuclear Science and Techniques 33, 114 (2022). (Cover article)

    4. A. Guo#, J. Zhang#, B. He, A. Li, T. Sun, W. Li, J. Wang, R. Tai, Y. liu, Z. Qian, J. Fan*, A. Sali, R. Stevens, H. Jiang*, “Quantitative, in situ visualization of intracellular insulin vesicles in pancreatic beta cells”, Proc Natl Acad Sci USA.119(32): e2202695119 (2022).

    5. T. Li, B. He, X. Zhang, J. Fan*, L. Gao, Z. Sun, J. Zhang, A. Guo, D. Pan, X. Yin, Y. Tong, C. Song, Y. Kohmura. M. Yabashi, T. Ishikawa, X. Gao*, H. Jiang*, “Three-Dimensional Quantitative Coherent Diffraction Imaging of Staphylococcus aureus Treated with Peptide-Mineralized Au-Cluster Probes”, Anal. Chem. 94, 13136-13144 (2022). (Supplementary cover article)

    6. D. Pan, J. D. Fan*, Z. Z. Nie, Z. B. Sun, J. H. Zhang, Y. J. Tong, B. He, C. Y. Song, Y. Kohmura, M. Yabashie, T. Ishikawae, Y. Q. Shen, H. D. Jiang*, “Quantitative analysis of radiation effect on structure of mitochondria using coherent diffraction imaging with clustering algorithm”, IUCrJ 9, 223-230 (2022).

    7. Z. S. He#, F. Ye#, C. Y. Zhang#, J. D. Fan#, Z. Y. Du, W. C. Zhao, Q. Yuan, W. C. Niu, F. P. Gao, B. He, P. Cao, L. N. Zhao, X. J. Gao, X. F. Gao, B. Sun, Y. H. Dong, J. C. Zhao, J. X. Qi, X. J. Liang, H. D. Jiang*, Y. Gong*, W. J. Tan*, X. Y. Gao*, “A comparison of Remdesivir versus gold cluster in COVID-19 animal model: A better therapeutic outcome of gold cluster”, Nano Today 44, 101468 (2022).

    8. A. M. Guo, J. H. Zhang, Y. Wang, J. Fan, B. He, J. Wang, R. Z. Tai, X. J. Liang*, H. D. Jiang*, “Nanoscale detection of subcellular nanoparticles by X-ray diffraction imaging for precise quantitative analysis of whole cancer cells”, Anal. Chem.93. 5201-5210 (2021). (Supplementary cover article)

    9. C. Y. Zhang, S. K. Yao, C. Xu, Y. N. Chang, Y. B. Zong, K. Zhang, X. Z. Zhang, L. J. Zhang, C. Y. Chen, Y. L. Zhao, H. D. Jiang*, X. Gao*, Y. L. Wang*, “3D imaging and quantification of the integrin at a single-cell base on a multisignal nanoprobe and synchrotron radiation soft X-ray tomography microscopy”, Anal. Chem. 93, 1237-1241 (2021).

    10. C. Jung, Y. Ihm, D. H. Cho, H. Lee, D. Nam, S. Kim, I. T. Eom, J. Park, C. Kim, Y. Kim, J. D. Fan, N. J. Ji, J. R Morris, S. Owada, K. Tono, J. H. Shim, H. D. Jiang, M. Yabashi, T. Ishikawa, D. Y. Noh, C. Y. Song, “Inducing thermodynamically blocked atomic ordering via strongly driven nonequilibrium kinetics”Science Advances 7, eabj8552 (2021).

    11. L. Gao, Y. Zhang, L. N, Zhao, W. C. Niu, Y. H. Tang, F. P. Gao, P. Cai, Q. Yuan, X. Y. Wang, H. D. Jiang, X. Y. Gao, “An artificial metalloenzyme for catalytic cancer-specific DNA cleavage and operando imaging”, Science Advances 6, eabb1421 (2020).

    12. A. Rana#, J. H. Zhang#, M. Pham, A. Yuan, Y. H. Lo, H. D. Jiang, S. Osher, J. Miao, “Potential of attosecond coherent diffractive imaging”, Phys. Rev. Lett. 125, 086101 (2020). (Highlighted by Science 369, 1337, 2020)

    13. C. Y. Zhang, L. Gao, Q. Yuan, L. N. Zhao, W. C. Niu, P. J. Cai, J. J. Li, X. Han, Z. He, F. P. Gao, Y. L. Wang, H. D. Jiang, Z. F. Chai, X. Y. Gao, “Is GSH Chelated Pt Molecule Inactive in Anti‐Cancer Treatment? A Case Study of Pt6GS4”, Small 16, e2002044 (2020).

    14. N. Q. Gong, X. W. Ma, X. Ye, Q. F. Zhou, X. Chen, X. L. Tan, S. K. Yao, S. D. Huo, T. B. Zhang, S. Chen, X. Teng, X. X. Hu, J. Yu, Y. L. Gan, H. D. Jiang, J. Li, X. J. Liang, “Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment”, Nature Nanotechnology 14, 379-387 (2019).

    15. Z. Q. Li, P. F. Zhu, J. M. Ding, N. J. Ji, Y. Chen, Z. Y. Wang, X. L Duan*, H. D. Jiang*, “Increased concentration of Yb3+ and high crystal field strength in RbTiOPO4:Ta single crystal with optimized growth”, Crystal Growth & Design 19, 7143-7152 (2019).

    16. Z. B. Sun, J. D. Fan, H. Y. Li, H. J. Liu, D. W. Nam, C. Kim, Y. H. Kim, Y. B. Han, J. H. Zhang, S. K. Yao, J. H. Park,S. N. Kim, K. Tono, M. Yabashi, T. Ishikawa, C. Y. Song, C. H. Fan, H. D. Jiang*, “Necessary Experimental Conditions for Single-Shot Diffraction Imaging of DNA-Based Structures with X-ray Free-Electron Lasers”, ACS Nano 12, 7509-7518 (2018).

    17. S. K. Yao, J. D. Fan, Z. Y. Chen, Y. B. Zong, J. H. Zhang, Z. B. Sun, L. J. Zhang, R. Z. Tai, Z. Liu, C. Y. Chen, H. D. Jiang*, “Three-dimensional ultrastructural imaging reveals the nanoscale architecture of mammalian cells”, IUCrJ 5, 141-149 (2018). (Cover article)

    18. R. Mani, S. K. Gupta, P. S. Ghosh, H. D. Jiang*, “Yellow Emission from Low Coordination Site of Sr2SiO4:Eu2+, Ce3+: Influence of Lanthanide Dopants on the Electron Density and Crystallinity in Crystal Site Engineering Approach”, Chemistry - A European Journal 24, 16149-16159 (2018). 

    19. B. J. Ma, Y. Wu, S. Zhang, S. C. Wang, J. C. Qiu, L. L. Zhao, D. D. Guo, J. Z. Duan, Y. H. Sang, L. L. Li, H. D. Jiang*, H. Liu*, “Terbium-Aspartic Acid Nanocrystals with Chirality-Dependent Tunable Fluorescent Properties”, ACS Nano 11, 1973-1981 (2017).

    20. B. J. Ma, S. Zhang, R. Y. Liu, J. C. Qiu, L. L. Zhao, S. C. Wang, J. Li, Y. H. Sang, H. D. Jiang*, H. Liu*, “Prolonged fluorescence lifetime of carbon quantum dots by combining with hydroxyapatite nanorods for bio-applications”, Nanoscale 9, 2162-2171 (2017).

    21. Y. B. Zong, S. K. Yao, G. W. Crawford, H. Fang, J. F. Lang, J. D. Fan, Z. B. Sun, Y. Liu, J. H. Zhang, X. L. Duan, G. Z. Zhou, T. Q. Xiao, F. S. Luan, Q. Wang, X. X. Chen*, H. D. Jiang*, “Selection for oil content during soybean domestication revealed by x-ray tomography of ancient beans”, Scientific Reports 7, 43595 (2017).

    22. Y. B. Zong, S. K. Yao, J. F. Lang, X. X. Chen, J. D. Fan, Z. B. Sun, X. L. Duan, N. N. Li, H. Fang, G. Z. Zhou, T. Q. Xiao, A. G. Li, H. D. Jiang*, “Structural and compositional analysis of a casting mold sherd from ancient China”, PLoS ONE 12, 0-e0174057 (2017).

    23. J. D. Fan, Z. B. Sun, Y. L. Wang, J. Park, S. Kim, M. Gallagher-Jones, Y. Kim, C. Song, S. K. Yao, J. Zhang, J. H. Zhang, X. L. Duan, K. Tono, M. Yabashi, T. Ishikawa, C. H. Fan, Y. L. Zhao, Z. F. Chai, X. Y. Gao*, T. Earnest, H. D. Jiang*, “Single-pulse enhanced coherent diffraction imaging of bacteria with an X-ray free-electron laser”, Scientific Reports 6, 34008 (2016).

    24. S. K. Yao, J. D. Fan, Y. B. Zong, Y. He, G.Z. Zhou, Z. B. Sun, J. H. Zhang, Q. J. Huang, T. Q. Xiao, H. D. Jiang*, “Equally sloped X-ray microtomography of living insects with low radiation dose and improved resolution capability”, Applied Physics Letters 108, 123702 (2016).

    25. J. H. Li, J. C. Qiu, W. B. Guo, S. Wang, B. J. Ma, X. N. Mou, Mi. Tanes, H. D. Jiang*, H. Liu*“Cellular internalization of LiNbO3 nanocrystals for second harmonic imaging and the effects on stem cell differentiation”, Nanoscale 8, 7416-7422 (2016).

    26. H. D. Jiang, “Cryo-coherent diffractive imaging of biological samples with X-ray free-electron lasers”, Acta Cryst. A72, 177–178 (2016).

    27. J. D. Fan, Z. B. Sun, J. Zhang, Q. J. Huang, S. k. Yao, Y. b. Zong, Y. Kohmura, T. Ishikawa, H. Liu, H. D. Jiang*Quantitative Imaging of Single Unstained Magnetotactic Bacteria by Coherent X-ray Diffraction MicroscopyAnalytical Chemistry 87, 5849-5853 (2015).

    28. J. D. Fan, Y. Zhang, N. J. Ji, X. L. Duan, H. liu, J. Y. Wang, H. D. Jiang*Hierarchical structures of self-assembled hybrid calcium carbonate: nucleation kinetic studies on biomineralizationCrystEngComm. 17, 5372-5376, (2015). (Inside front cover article)

    29. J. Zhang, J. D. Fan, J. H. Zhang, Z. B. Sun, Q. J. Huang, H. D. Jiang*, “Three-dimensional coherent diffraction imaging of Mie-scattering spheres by laser single-orientation measurement”, Chin. Phys. B 24, 094201 (2015). (Suggested by editors)

    30. H. D. Li, Y. H. Sang, S. Chang, X. Huang, Y. Zhang, R. S. Yang,H. D. Jiang, H. Liu, Z. L. Wang, Enhanced Ferroelectric-Nanocrystal-Based Hybrid Photocatalysis by Ultrasonic-Wave-Generated Piezophototronic Effect, Nano letters. 15 (4), 2372-2379 (2015).

    31. R. Xu, H. D. Jiang, C. Song, J. A. Rodriguez, Z. Huang, C.-C. Chen, D. Nam, J. Park, M. Gallagher-Jones, S. Kim, S. Kim, A. Suzuki, Y. Takayama, T. Oroguchi, Y. Takahashi, J. Fan, Y. Zou, T. Hatsui, Y. Inubushi, T. Kameshima, K. Yonekura, K. Tono, T. Togashi, T. Sato, M. Yamamoto, M. Nakasako, M. Yabashi, T. Ishikawa and J. Miao, Single-shot three-dimensional structure determination of nanocrystals with femtosecond X-ray free-electron laser pulses, Nature Commun. 5, 4061 (2014).

    32. H. D. Jiang, R. Xu, C.-C. Chen, W. Yang, J. Fan, X. Tao, C. Song, Y. Kohmura, T. Xiao, Y. Wang, Y. Fei, T. Ishikawa, W. L. Mao, and J. Miao, “Three-dimensional coherent x-ray diffraction imaging of molten iron in mantle olivine at nanoscale resolution”, Phys. Rev. Lett., 110, 205501 (2013).

    33. J. Tian, Y. Sang, G. Yu, H. D. Jiang, X. Mu, H. Liu, “A Bi2WO6based hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation”, Advanced Materials 25, 5075-5080 (2013).

    34. H. D. Jiang, C. Song, C. C. Chen, R. Xu, K. Raines, B. Fahimian, C. H. Lu, T. K. Lee, A. Nakashima, J. Urano, T. Ishikawa, F. Tamanoi, J. Miao “Quantitative 3D imaging of whole, unstained cells at a resolution of 50 - 60 nm by X-ray diffraction microscopy”, Proc. Natl. Acad. Sci. USA, 107, 11234-11239 (2010).

    35. K. S. Raines, S. Salha, R. Sandberg, H. D. Jiang, J. A. Rodríguez, B. P. Fahimian1, H. C. Kapteyn, JDu, J. Miao Ankylography: three-dimensional structure determination from a single view”, Nature 463, 214-217 (2010). (Highlighted byNature Methods7, 96, 2010)

    36. H. D. Jiang, D. Johnson,C. Song, B. Amirbekian, Y. Kohmura, Y. Nihino, Y. Takahashi,T. Ishikawa, J. Miao “Nanoscale Imaging of Mineral Crystals inside Biological Composite Materials Using X-ray Diffraction Microscopy”, Phys. Rev. Lett. 100, 038103 (2008).

    37. C. Song, H. D. Jiang, A. Mancuso, B. Amirbekian, L. Peng, R. Sun, S. S. Shah, Z. H. Zhou, T. Ishikawa, J. Miao “Quantitative Imaging of Single, Unstained Viruses with Coherent X Rays”, Phys. Rev. Lett. 101, 158101 (2008).

    38. C. Song, R. Bergstrom, D. Ramunno-Johnson, H. D. Jiang, D. Paterson, M. D. de Jonge, I. McNulty, J. Lee, K. Wang, J. Miao “Nanoscale Imaging of Buried Structures with Elemental Specificity Using Resonant X-ray Diffraction Microscopy”, Phys. Rev. Lett. 100, 025504 (2008). (Highlighted byNature Nanotechnology3, 126, 2010)

    39. H. D. Jiang, X. Y. Liu, G. Zhang, Y. Li Kinetics and template nucleation of self-assembled hydroxyapatite nanocrystallites by chondroitin sulfate,” J. Biol. Chem. 280, 42061-42066 (2005).

    40. H. D. Jiang, X. Y. Liu “Principles of mimicking and engineering the self-organized structure of hard tissues,”J. Biol. Chem. 279 (40), 41286-41293 (2004).


    jianghd@shanghaitech.edu.cn
  • 翁祖谦教授
    翁祖谦,正教授
    通讯地址 Office Address:学院5号楼403-F

    电子邮件 Email:wengzq@shanghaitech.edu.cn

    2019.07-迄今 上海科技大学教授

    2015.04-2019.06 北京高科学研究中心研究

    2010.07-2015.04 Staff Scientist, SSRL, SLAC National Accelerator Laboratory

    2006.04-2010.07 Scientist, Exp. Division, European Synchrotron Radiation Facility

    2005.01-2006.03 Senior Res. Associate, BioCAT, CSRRI, Illinois Institute of Technology

    2004.02-2004.12 Post-doc, Biophysics Res. Division, Univ. of Michigan at Ann Arbor

    1997.09-2003.12 PhD, Chemistry, Univ. of Michigan at Ann Arbor

    1993.09-1995.07 台湾大学化学系

    1989.09-1993.06 台湾大学化学系学士




    研究介绍 

    Research Interest



    研究主要是探讨表界面间电移和能量传递的超快程,包括光致反、光催化、化学反等,研究其反途径与机理,以及生物酶蛋白的金属氧化还原中心的功能结构发展X射线谱学方法学(XASXESIXS)与实验探测技术,研制高能量分辨X射线光谱仪(图 1,2,3)。在同步施和X线自由子激光装置X线,在原位反条件下,时间分辨技,配合第一原理算,表征反应位点结构行能源材料的机理研究。

    目前在研项目主要包括三个方面:(1)利用pump-probe探测技术研究光催化反应的电荷转移动力学(图 4,5,6);(2)(光)电催化反应催化剂的制备、表征和机理研究(图 7);(3)用于X射线光谱仪的元件和材料的制备研究(图 8,9,10)。

      

    图 1:研制的高能量分辨X射线光谱仪

      

    图 2:依托高能量分辨能谱仪发展的先进X射线谱学方法学

      

    图 3:多维超快X射线谱学



    图 4:利用超快光谱技术研究量子点表面缺陷对电子转移过程影响。(a)泵浦探测技术原理示意图;(b)(c)CdSe QDs的瞬态吸收光谱。



    图 5:(a)(b)在酸处理前后,测试ZnO中的 Zn L-edge和 O K-edge的XAS,证明了ZnO经酸处理后氧空位增多;(c)通用同步加速器超快泵浦探测束示意图。




    图 6:通过调控碳源和掺杂前驱体,合成具有UV- Visible波段的荧光发射的碳点。基于瞬态吸收光谱(TA),研究碳点的碳核态、表面缺陷态和分子态,在光催化体系下的电荷转移动力学过程。


     

    图 7:采用电化学沉积的手段制备了高效能的电解水催化剂,利用XPS,XAS等手段证明了Fe原子对Ni原子的价态的调控,通过FTIR以及Raman光谱证明了羧酸自由基的存在,采用动力学同位素实验证明在析氧反应中发生的质子耦合电子转移过程。




    图 8:利用激光直写光刻和反应离子束刻蚀实现可见光波段的金刚石光栅制备,实现核心刻蚀工艺的突破。目前致力于金刚石离子束注入光刻的实现,实现高效率高准确度的金刚石光刻工艺。



    图 9:将硅/锗/石英晶片压弯并粘接在玻璃基底上,保证曲率半径和表面形貌满足使用条件。使用胶水粘合工艺,完成半径1000mm弯晶单色器的制备,且表面RMS、聚焦性能、曲率半径等几何面型参数与成品弯晶接近。


    图 10:利用脉冲激光沉积技术(Pulsed Laser Deposition)在衬底上沉积BiFeO3 (BFO)薄膜,用XRD和RSM(Reciprocal Space Mapping),AFM技术来判断薄膜生长的质量,并采用C-AFM(Conductive-AFM),PFM(Piezoresponse Force Microscopy)等方法来进行电学测试,同时结合课题组的XAS技术,研究BFO薄膜的晶体结构,铁电性以及反铁磁性三者之间的耦合关系和其他独特性质。左图为PLD技术示意图,右图为经过氢氟酸酸洗后得到的具有原子台阶的SrTiO3衬底表面的AFM测试结果。



    45.   “Resonant X-ray emission spectroscopy from broadband stochastic pulses at an X-ray free electron laser”. Communications Chemistry2021. 4(1).

    44.  “The five-analyzer point-to-point scanning crystal spectrometer at ESRF ID26”. Journal of Synchrotron Radiation2021. 28: p. 362-371.

    43.  “Effect of 3d/4p Mixing on 1s2p Resonant Inelastic X-ray Scattering: Electronic Structure of Oxo-Bridged Iron Dimers”. Journal of the American Chemical Society2021. 143(12): p. 4569-4584.

    42.  “Probing the Electronic Band Gap of Solid Hydrogen by Inelastic X-Ray Scattering up to 90 GPa”. Physical Review Letters2021. 126(3).

    41.  “Efficient approaches to solutions of partition function for condensed matters”. Journal of Physics-Condensed Matter2021. 33(11).

    40.  “Sulfur K beta X-ray emission spectroscopy: comparison with sulfur K-edge X-ray absorption spectroscopy for speciation of organosulfur compounds”. Physical Chemistry Chemical Physics2021. 23(8): p. 4500-4508.

    39.  “The Limitations of 5f Delocalization and Dispersion”. Applied Sciences-Basel2021. 11(9).

    38.  “Underlying simplicity of 5f unoccupied electronic structure”. Journal of Vacuum Science & Technology A2021. 39(4).

    37.  “Which phase of Ta2O5 being of the largest dielectric constant”. Journal of the American Ceramic Society2021.

    36.    “Femtosecond electronic structure response to high intensity XFEL pulses probed by iron X-ray emission spectroscopy”. Scientific Reports2020. 10(1).

    35.    “A versatile Johansson-type tender x-ray emission spectrometer”. Review of Scientific Instruments2020. 91(3).

    34.    “Towards the Quantification of 5f Delocalization”. Applied Sciences-Basel2020. 10(8).

    33.    “EXAFS as a probe of actinide oxide formation in the tender X-ray regime”. Surface Science2020. 698.

    32.    “Towards the Quantification of 5f Delocalization (vol 10, 2918, 2020)”. Applied Sciences-Basel2020. 10(12).

    31.    “Ultrathin transmission-type bent crystals for XFEL spectral diagnostic”. in International Conference on Optoelectronic and Microelectronic Technology and Application2020. Nanjing, PEOPLES R CHINA.

    30.    “A soft X-ray emission flat-field grating spectrometer for time-resolved spectroscopy”. in International Conference on Optoelectronic and Microelectronic Technology and Application2020. Nanjing, PEOPLES R CHINA.

    29. “NpSe2: a binary chalcogenide containing modulated selenide chains and ambiguous-valent metal”, Angew. Chem. Int. Ed., 201958, 16130–16133.

    28.   “Soft X-ray spectroscopy with Transition-Edge Sensors at Stanford Synchrotron Radiation Lightsource beamline 10-1”, Rev. Sci. Instrum.201990, 113101.

    27.   “Comparison of Two Efficient Methods for Calculating Partition Functions”, Entropy201921, 1050.

    26.   “Charge-Transfer-induced Interfacial Exchange Coupling at the Co/BiFeO3 Interface”, Phys. Rev. Appl.201912, 044010.

    25.   “Diagram, Valence-to-Core, and Hypersatellite K beta X-ray Transitions in Metallic Chromium”, X-ray Spectrom.201948, 351–359.

    24.   “Revisiting the Phase Transition of Magnetite under Pressure”, J. Phys. Chem. C2019123, 21114–21119.

    23.   “What Retards the Response of Graphene based Gaseous Sensor”, Sens. Actuators A Phys.2019295, 188–192.

    22.   “A New Model to Predict Optimum Conditions for Growth of 2D Materials on a Substrate”, Nanomaterials20199, 978.

    21.   “Nature of Cobalt Species during the in situ Sulfurization of Co(Ni)Mo/Al2O3 Hydrodesulfurization Catalysts”, J. Synchrotron Rad.201926, 811–818.

    20.   “A High-Throughput Energy-Dispersive Tender X-ray Spectrometer for Shot-to-Shot Sulfur Measurements”, J. Synchrotron Rad.201926, 629–634.

    19.   “Separate measurement of the 5f5/2 and 5f7/2 unoccupied density of states of UO2”, J. Electron Spectrosc. Relat. Phenom., 2019232, 100–104.

    18.   “Electronic Structure of Naturally Occurring Aromatic Carbon”, EnergyFuels., 201933, 2099–2105.

    17.   “Electronic structure changes upon lithium intercalation into graphite – Insights from ex situ and operando X-ray Raman spectroscopy”, Carbon2019143, 371–377.

    16.   “Operando Observation of Chemical Transformations of Iridium Oxide During Photoelectrochemical Water Oxidation”, ACS Appl. Energy Mat., 20192, 1371–1379.

    15.   “Initial metal-metal bond breakage detected by fs X-ray scattering in the photolysis of Ru3(CO)12 in cyclohexane at 400 nm”, Photochem. Photobiol. Sci.201918, 319–327.

    14.   “Carbon Core Electron Spectra of Polycyclic Aromatic Hydrocarbons”, J. Phys. Chem. A, 2018, 122, 5730–5734.

    13.   “Highly Active Surface Structure in Nanosized Spinel Cobalt-based Oxides for Electrocatalytic Water Splitting”, J. Phys. Chem. C2018122, 14447–14458.

    12.   “Surface- and Pressure-induced Bulk Kondo Breakdown in SmB6”, Phys. Rev. B201897, 235153.

    11.   “Ultrafast terahertz field control of electronic and structural interactions in vanadium dioxide”, Phys. Rev. B201898, 045104.

    10.   “Oxygen Release Induced Chemomechanical Breakdown of Layered Cathode Materials”, Nano Lett., 201818, 3241–3249.

    9.      “L-Edge Spectroscopy of Dilute, Radiation-Sensitive Systems using a Transition-Edge-Sensor Array”, J. Chem. Phys., 201821, 214201.

    8.      “Soft X-Ray Second Harmonic Generation as an Interfacial Probe”, Phys. Rev. Lett.2018120, 023901.

    7.      “Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries”, Chem. Rev., 2017117, 13123–13186.

    6.      “Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2’-bipyridine)2(CN)2]”, Struct. Dynamics20174, 044030.

    5.      “An Oxygen-Insensitive Hydrogen Evolution Catalyst Coated by a Molybdenum-based Layer for Overall Water Splitting”, Angew. Chem. Int. Ed.201756, 5780–5784.

    4.      “Operando Investigation on Au-MnOx thin films with improved activity for the oxygen evolution reaction”, Electrochimica Acta2017230, 22–28.

    3.      “Soft X-ray absorption spectroscopy investigation of the surface chemistry and treatments of copper indium gallium diselenide (CIGS)”, Sol. Energy Mater. Sol. Cells2017160, 390–397.

    2.      “Charge and spin-state characterization of cobalt bis(o-dioxolene) valence tautomers using Co Kβ x-ray emission and L-edge x-ray absorption spectroscopies”, Inorg. Chem., 201756, 737–747.

    1.      “Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substation”, Chem. Sci.20178, 515–523.

    元春泽

    副研究员

    研究方向:光电催化反应动力学研究;电化学能源材料和金属离子电池的研究

    邮箱 Email:yuanchz@shanghaitech.edu.cn

    李林

    副研究员

    研究方向:染料、催化剂和纳米材料的合成表征与应用;利用X射线光谱研究人工光合作用催化剂工作机理和分子激发态动力学。

    邮箱 Email:lilin1@shanghaitech.edu.cn

    豆宏斌

    2019级 研究生

    研究方向:量子点光催化析氢的超快过程探究

    邮箱 Email:douhb@shanghaitech.edu.cn

    杨智乞

    2019级 研究生

    研究方向:用于硬X射线实时监测的金刚石光栅的制备研究

    邮箱 Email:yangzhiq@shanghaitech.edu.cn

    张继豪

    2020级 研究生

    研究方向:利用泵浦探测手段研究基于碳量子点的光催化反应的电荷转移动力学。

    邮箱 Email:zhangjh5@shanghaitech.edu.cn

    曾暄琦

    2020级 研究生

    研究方向:x射线荧光光谱仪中弯晶的键合与测试。

    邮箱 Email:zengxq@shanghaitech.edu.cn

    李郭琦

    2020级 研究生

    研究方向:电催化析氧反应催化剂的研究

    邮箱 Email:ligq1@shanghaitech.edu.cn

    张大威

    2020级 研究生

    研究方向:光谱仪核心元件弯晶单色器的低温制备工艺流程设计以及X射线光谱的大数据算法分析

    邮箱 Email:zhangdw@shanghaitech.edu.cn

    孙兴瑞

    2020级 研究生

    研究方向:BiFeO3 (BFO)薄膜的制备、表征及性能研究

    邮箱 Email:sunxr@shanghaitech.edu.cn




























    wengzq@shanghaitech.edu.cn
  • 上海科技大学教授。1991年毕业于西安交通大学,2005年获得中国科学院核能科学与工程专业博士学位。先后应邀访问了美国费米实验室、美国国家强磁场实验室、德国汉堡同步辐射实验室(DESY)、欧洲散裂中子源实验室、日本理化学研究所、日本金属研究所等科研机构。作为主要负责人先后完成了HT-7托卡马克装置的低温系统建设与调试运行、 “EAST”低温测试系统设计与建设、总装备部“神七舱外航天服”任务、“稳态强磁场装置”氦低温系统与去离子水冷系统建设和调试运行、“SHINE”低温工厂和“SHINE”超导测试站的建设任务。先后获得安徽省科技进步一等奖、中国科学院突出贡献奖、安徽省科技进步特等奖等。长期从事液氦/超流氦系统关键技术研究。

    ouyangzhr@shanghaitech.edu.cn
  • 江玉海教授

    江玉海,正教授

    通讯地址:上海科技大学大科学中心8号楼304

    电子邮件:jiangyh3@shanghaitech.edu.cn

    课题组网页:http://www.ultrafast-science.com 

    个人简历


    2000.11-2006.05   德国自由柏林大学 博士

    2006.06-2007.12   德国马普核物理研究所 博士后

    2008.01-2011.08   德国马普核物理研究所 项目负责人

    2011.09-2022.01   中国科学院上海高等研究院 研究员

    2022.02-现在    上海科技大学大科学中心和物质学院,正教授



      


    长期从事原子分子以及纳米材料光物理的实验和理论研究工作,是世界上第一批利用自由电子激光研究原子分子材料超快非线性过程的实验专家(从2006年起),研制和搭建了世界上第一代时间分辨极紫外泵浦-探测多体符合探测谱仪(Coltrims)、研制了国内首台冷原子精密动量分布成像谱仪(Rb-Motrims)、三维兆赫兹速度成像(VMI)谱仪、高信噪比时间分辨瞬态吸收谱仪、太赫兹成像谱仪,时间分辨太赫兹泵浦探测等科学研究平台,提供一系列探索原子分子与纳米材料物理机制和化学反应的手段。


    研究方向主要集中在:1. 基于先进光源的微观量子科学研究,超高场和极短时间极端条件下的原子分子新现象;2. 太赫兹产生与应用,深空军民高速运动目标的高速太赫兹成像,基于太赫兹原子无线传感的弱信号探测,太赫兹纳米材料动力学探测。3. 强场轨线理论,TDSEAI算法,理解强场物理规律

      

    课题组长期诚聘博士后,副研究员以及招收硕士、博士研究生:欢迎具有物理、光电等相关专业背景,对原子分子层面上材料超快量子现象与应用感兴趣的学生和学者加入!







    1.         Shuai Zhang, Xincheng Wang, Wenbin Jiang,   Yizhu Zhang, Yuhai Jiang, and Zhiyuan Zhu, Charge-encoded Multi-photoion   coincidence for three-body fragmentation of CO2 in the strong laser fields,   J. Chem. Phys. 156,134302 (2022).

    2.         Jiang Wenbin; Xincheng Wang*; Shuai Zhang;   Ruichao Dong; Yuliang Guo; Jinze Feng; Zhenjie Shen; Zhiyuan Zhu; Yuhai   Jiang*, A Reaction Microscope for AMO Science at Shanghai Soft X-ray   Free-Electron Laser Facility, Applied Sciences 2022, 12(4):1821.

    3.         Fachao Hu; Canzhu Tan; Yuhai Jiang*; Matthias   Weidemüller*; Bing Zhu*, Observation of photon recoil effects in single-beam   absorption spectroscopy with an ultracold strontium gas, Chinese Physics B,   2022, 31 016702

    4.         Canzhu Tan; Xiaodong Lin; Yabing Zhou; Yuhai   Jiang; Matthias Weidemüller; Bing Zhu*, Dynamics of position-disordered Ising   spins with a soft-core potential, Physical Review B, 2022, 105 104204

    5.         Fachao Hu(胡发超), Canzhu   Tan(檀灿竹), Yuhai Jiang(江玉海),   Matthias Weidemüller and Bing Zhu(朱兵)Observation   of photon recoil effects in single-beam absorption spectroscopy with an   ultracold strontium gas, Chin. Phys. B, 2022, 31, 016702. DOI:   10.1088/1674-1056/ac2486

    6.         Chaochao Qin,   Liu-Hong Xu,   Zhongpo Zhou*,   Jian Song,   Shu-Hong Ma,   Zhaoyong Jiao  and    Yuhai Jiang*, Carrier dynamics in two-dimensional perovskites:   Dion-Jacobson vs. Ruddlesden-Popper thin films, J. Mater. Chem. A, 2022,10,   3069-3076, https://doi.org/10.1039/D1TA09549H   

    7.         Yizhu Zhang, Kaixuan Zhang, Tian-Min Yan*,   and Yuhai Jiang*, Electron trajectory backanalysis for spectral profile in   two-color terahertz generation, J. Phys. B: At. Mol. Opt. Phys. 54 (2021)   195401. https://doi.org/10.1088/1361-6455/ac319c

    8.         Chaochao Qin, Zhinan Jiang, Zhongpo Zhou*,   Yufang Liu, Yuhai Jiang*, Multiexciton dynamics in CsPbBr3 nanocrystals: the   dependence on pump fluence and temperature, Nanotechnology 32455702   (2021) https://doi.org/10.1088/1361-6528/ac18d7

    9.         Tao   He, Yizhu Zhang*, J. J. Zhao, Xincheng Wang, Zhenjie Shen, Zuanming Jin,   Tian-Min Yan*, and Yuhai Jiang*, Third-order harmonic generation in a bi-chromatic   elliptical laser field, Opt. Exp. 29, 21396 (2021).

    10.      Chang   Qiao, Can-Zhu Tan, Julia Siegl, Fa-Chao Hu, Zhi-Jing Niu, Y.H. Jiang*, Matthias   Weidemüller*, Bing Zhu*, Rydberg blockade in an ultracold strontium gas revealed   by two-photon excitation dynamics, Phys. Rev. A 103, 063313 (2021).

    11.      Zhaoyong   Jiao, Tingting Jiang, Zhongpo Zhou, Chaochao Qin*, Jinyou Long*, Yufang Liu   and Yuhai Jiang*, Identification of a bridge‑specific intramolecular   exciton dissociation pathway in donor–π–acceptor alternating conjugated   polymers,   Nanoscale Res. Lett. 16, 51 (2021).

    12.      Chaochao   Qin, Zhinan Jiang, Zhongpo Zhou*, Yufang Liu, Yuhai Jiang*, Excitation Wavelength and Intensity-Dependent   Multiexciton Dynamics in CsPbBr3 Nanocrystals, Nanomaterials 11, 463 (2021).

    13.      Shuai   Wang, Zhiyuan Zhu*, Yizhu Zhang, Tian-Min Yan*, and Yuhai Jiang*, Rabi oscillations and coherence dynamics in terahertz   streaking-assisted photoelectron spectrum, Chin. Phys. Lett. 38, 013401 (2021).

    14.      Chaochao   Qin, Jiajia Guo, Zhongpo Zhou*, Yufang Liu, Yuhai Jiang*, Hot Excitons Cooling and Multiexcitons Auger   Recombination in PbS Quantum Dots, Nanotechnology 32, 185701 (2021).

    15.      B.-Y.   Li, J. Zhang, Y. Zhang*, T.-M. Yan*, and Y. H. Jiang*, Terahertz-Field-Induced near-Cutoff Even-Order Harmonics   in a Femtosecond Laser, Phys. Rev. A 102, 063102 (2020).

    16.      J.   Yuan, S. Liu, X. Wang, Z. Shen, Y. Ma, H. Ma, Q. Meng, T.-M. Yan, Y. Zhang,   A. Dorn, M. Weidemüller, D. Ye*, and Y. Jiang*, Ellipticity-Dependent Sequential over-Barrier Ionization   of Cold Rubidium,   Phys. Rev. A 102, 043112 (2020).

    17.      Minghuan   Cui, Chaochao Qin*, Yuanzhi Jiang, Mingjian Yuan, Liuhong Xu, Didi Song,   Yuhai Jiang*, and Yufang Liu*, Direct Observation of Competition between Amplified   Spontaneous Emission and Auger Recombination in Quasi-Two-Dimensional   Perovskites,   J. Phys. Chem. Lett. 11, 5734-5740 (2020).

    18.      凌中火张逸竹*, 王帅阎天民*, 江玉海*, 太赫兹辅助测量铷原子超快量子相干过程的理论研究物理学报 69, 173401   (2020).

    19.      Junyang   Yuan (袁俊阳), Yixuan Ma   (马祎璇), Renyuan Li (李任远),   Huanyu Ma (马欢玉), Tian-Min Yan (阎天民) *, Yizhu Zhang (张逸竹), Difa Ye (叶地发), Zhenjie Shen (沈镇捷), Xincheng Wang (王新成) *, Matthias Weidemüller, and Yuhai Jiang (江玉海) *, Momentum spectroscopy for multiple ionization of cold rubidium   in the elliptically polarized laser field, Chin. Phys. Lett. 37, 053201 (2020).

    20.      Kaixuan   Zhang, Yizhu Zhang*, Xincheng Wang, Tian-Min Yan*, and Y. H. Jiang*, Continuum Electron Giving Birth to Terahertz Emission, Photonics Research 8, 760-767 (2020).

    21.      Kaixuan   Zhang, Yizhu Zhang*, Xincheng Wang, Zhenjie Shen, Tian-Min Yan*, and Y. H.   Jiang*, Experimental   evidences for terahertz emission of continuum electrons in the dual-color   laser field,   Opt. Lett. 45, 1838 (2020).

    22.      马祎璇李任远袁俊阳孟秋香马欢玉阮舒舒张逸竹阎天民沈镇捷王新成*, 江玉海*, 冷原子成像谱仪中靶表征及光电离研究中国激光 47,   0601011 (2020).

    23.      He   Feng (冯赫), Tian-Min   Yan (阎天民)*, and Yuhai Jiang (江玉海)*, Applicability of coupling strength estimation for linear   chains of restricted access, Chin. Phys. B 29, 030305 (2020).

    24.      He   Feng, Tian-Min Yan*, and Y. H. Jiang*, Dimerized   Decomposition of Quantum Evolution on an Arbitrary Graph, Quantum Inf. Process. 19, 30 (2020).

    25.      Chang   Qiao, C. Z. Tan , F. C. Hu , Luc Couturier, Ingo Nosske, Peng Chen, Y. H.   Jiang, Bing Zhu*, and Matthias Weidemüller*, An ultrastable laser system at 689 nm for cooling and   trappingof strontium,   Applied Physics B 125, 215 (2019).

    26.      Christian   Ott, Lennart Aufleger, Thomas Ding, Marc Rebholz, Alexander Magunia,   Maximilian Hartmann, Veit Stooß, David Wachs, Paul Birk, Gergana D. Borisova,   Kristina Meyer, Patrick Rupprecht, Carina da Costa Castanheira, Robert   Moshammer, Andrew R. Attar, Thomas Gaumnitz, Zhi-Heng Loh, Stefan Düsterer,   Rolf Treusch, Joachim Ullrich, Yuhai Jiang, Michael Meyer, Peter   Lambropoulos, and Thomas Pfeifer, Strong-Field Extreme-Ultraviolet Dressing of Atomic Double   Excitation,   Phys. Rev. Lett. 123, 163201 (2019).

    27.      Yan   Huang (黄燕), Chaochao   Qin (秦朝朝), Yizhu Zhang (张逸竹),   Xincheng Wang (王新成), Tian-Min Yan (阎天民)*, and Yuhai Jiang (江玉海)*, Trajectory analysis of few-cycle strong field ionization   in two-color circularly polarized fields, Chin. Phys. B 28, 093202 (2019).

    28.      Yifei   Tang, Meng Li, Yizhu Zhang*, Zhaokui Wang, Xinya Hou, Chong Dong, Chao-chao   Qin, Shixun Cao, Y.H. Jiang*, Ultrafast carrier dynamics in high-performance   α-bis-PCBM doped organic-inorganic hybrid perovskite solar cell, Organic Electronics 75, 105384 (2019).

    29.      Fachao   Hu, Ingo Nosske, Luc Couturier, Canzhu Tan, Chang Qiao, Peng Chen, Y. H.   Jiang*, Bing Zhu*, and Matthias Weidemüller*, Analyzing a single-laser repumping scheme for efficient   loading of a strontium magneto-optical trap, Phys. Rev. A 99, 033422 (2019).

    30.      Renyuan   Li, Junyang Yuan, Xincheng Wang, Xinya Hou, Shuai Zhang, Zhiyuan Zhu, Yixuan   Ma, Qi Gao,Zhongyang Wang, T.-M. Yan, Chaochao Qin, Yizhu Zhang, Matthias   Weidemüller, and Y.H. Jiang*, Recoil-ion momentum spectroscopy for cold rubidium in a   strong femtosecond laser field, Journal of Instrumentation 14, 02022 (2019).

    31.      Luc   Couturier, Ingo Nosske, Fachao Hu, Canzhu Tan, Chang Qiao, Y. H. Jiang*, Peng   Chen*, and Matthias Weidemüller*, Measurement of the strontium triplet Rydberg series by   depletion spectroscopy of ultracold atoms, Phys. Rev. A 99, 022503 (2019).

    32.      Kai-Xuan   Zhang, Yizhu Zhang*, Tian-Min Yan*, and Y. H. Jiang*, Joint Measurement of THz Wave and Third-Harmonic   Generation of Laser Filamentation in Air, in The 9th International Symposium on Ultrafast   Phenomena and Terahertz Waves, OSA Technical Digest (online) (Optical Society   of America, 2018), paper WG4.

    33.      何伟崔明焕宋迪迪秦朝朝江玉海基于迈克耳孙干涉仪的共线自相关超短光脉冲测量中国激光 45,   1204001 (2018).

    34.      朱晶秦朝朝江玉海激光场和温度对氢氰酸分子准直的影响原子与分子物理学报 35,   627 (2018).

    35.      Yizhu   Zhang, Tian-Min Yan*, and Y.H. Jiang*, Ultrafast Mapping of Coherent Dynamics and Density   Matrix Reconstruction in a Terahertz-Assisted Laser Field, Phys. Rev. Lett. 121, 113201 (2018).

    36.      Luc   Couturier, Ingo Nosske, Fachao Hu, Canzhu Tan, Chang Qiao, Jan Blume, Y. H.   Jiang*, Peng Chen* and Matthias Weidemueller*, Laser frequency stabilization using a commercial   wavelength meter,   Rev. Sci. Instruments 89, 043103 (2018).

    37.      Ingo   Nosske, Luc Couturier,Fachao Hu, Canzhu Tan, Chang Qiao, Jan Blume, Y. H.   Jiang*, Peng Chen* and Matthias Weidemueller*, Compact two-dimensional magneto-optical trap as a source   for cold strontium atoms, Phys. Rev. A 96, 053415 (2017); Phys. Rev. A 97, 039901   (2018).

    38.      Jier   Wang, Yizhu Zhang, Huifeng Shen, Yuhai Jiang, Zhongyang Wang, Spectral stability   of supercontinuum generation in condensed mediums, Opt. Eng.   56(7), 076107 (2017).

    39.      Q.   Meng, Y. Zhang, T.-M. Yan, and Y.H. Jiang, Post-processing phase-correction algorithm in   two-dimensional electronic spectroscopy, Opt. Exp. 25,006644 (2017).

    40.      Y.   Zhang, T.-M. Yan, and Y. H. Jiang, Precise phase determination with the built-in spectral   interferometry in two-dimensional electronic spectroscopy, Opt. Lett. 41, 4134 (2016).

    41.      H.   F. Shen, Y. Zhang, T.-M. Yan, Z. Y. Wang, and Y. H. Jiang, Moderately strong pump-induced ultrafast dynamics in   solution,   Chem. Phys. 476, 17 (2016).

    42.      Huang   Wen-Xiao, Zhang Yi-Zhu, Yan Tian-Min, Jiang Yu-Hai, Progress in study of   low-energy photoelectron in ultra-fast strong fields-analytical R-matrix   theory based semiclassical trajectory method, Acta Physica   Sinica, 65, 223204 (2016).

    43.      K.   Nagaya, K. Motomura, E. Kukk, H. Fukuzawa, S. Wada, T. Tachibana, Y. Ito, S.   Mondal, T. Sakai, K. Matsunami, R. Koga, S. Ohmura, Y. Takahashi, M. Kanno,   A. Rudenko,C. Nicolas, X.-J. Liu, Y. Zhang, J. Chen, M. Anand, Y. H. Jiang,   D.-E. Kim, K. Tono, M. Yabashi, H. Kono, C. Miron, M. Yao, and K. Ueda, Femtosecond charge   and molecular dynamics of I-containing organic molecules induced by intense   X-ray free electron laser pulses, Faraday Discuss.194, 537-5622016.

    44.      K.   Nagaya, K. Motomur, E. Kukk, Y. Takahashi, Yamazaki, S. Ohmura, H. Fukuzawa,   S. Wada, S. Mondal, T. Tachibana,Y. Ito, R. Koga, T. Sakai, K. Matsunami, K.   Nakamura, M. Kanno, A. Rudenko, C. Nicolas, X.-J. Liu, C. Miron, Y. Zhang, Y.   Jiang, J. Chen, M. Anand, D. E. Kim, K. Tono, M. Yabashi, M. Yao, H. Konoe   and K. Ueda, Ultrafast Dynamics of a Nucleobase Analogue Illuminated   by a Short Intense X-ray Free Electron Laser Pulse, Phys. Rev. X 6, 021035 (2016).

    45.      Feng   He, Zhang Yizhu, Jiang Yuhai*, Atomic and Molecular Experiments in Free Electron Laser   Field, Laser & Optoelectronics Progress, 53 010002 (2016).

    46.      Y.   Z. Zhang and Y. H. Jiang, Imaging Ultra-fast Molecular Dynamics in Free Electron   Laser Field, Advances of Atoms and Molecules in Strong   Laser Fields Chapter 8, World Science and Research Publishing, 2015

    47.      K.   Schnorr, A. Senftleben, G. Schmid, S. Augustin, M. Kurka, A. Rudenko, L.   Foucar, A. Broska, K. Meyer, D. Anielski, R. Boll, D. Rolles, M. Kübel, M. F.   Kling, Y. H. Jiang, S. Mondal, T. Tachibana, K. Ueda, T. Marchenko, M. Simon,   G. Brenner, R. Treusch, S. Scheit, V. Averbukh, J. Ullrich, T. Pfeifer, C. D.   Schröter, and R. Moshammer, Time-resolved study of ICD in Ne dimers using FEL   radiation,   Journal of Electron Spectroscopy and Related Phenomena 204, Part B, 245   (2015).

    48.      K.   Motomura, E. Kukk, H. Fukuzawa, S. Wada, K. Nagaya, S. Ohmura, S. Mondal, T.   Tachibana, Y. Ito, R. Koga, T. Sakai, K. Matsunami, A. Rudenko, C. Nicolas,   X.-J. Liu, C. Miron, Y. Zhang, Y. Jiang, J. Chen, M. Anand, D. E. Kim, K.   Tono, M. Yabashi, M. Yao, and K. Ueda, Charge and Nuclear Dynamics Induced by Deep Inner-Shell   Multiphoton Ionization of CH3I Molecules by Intense X-ray Free-Electron Laser   Pulses, J. Phys.   Chem. Lett. 6, 2944 (2015).

    49.      K.   Schnorr, A. Senftleben, M. Kurka, A. Rudenko, G. Schmid, T. Pfeifer, K.   Meyer, M. Kübel, M. F. Kling, Y. H. Jiang, R. Treusch, S. Düsterer, B.   Siemer, M. Wöstmann, H. Zacharias, R. Mitzner, T. J. M. Zouros, J. Ullrich,   C. D. Schröter, and R. Moshammer, Electron Rearrangement Dynamics in Dissociating   ${\mathrm{I}}_{2}^{n+}$ Molecules Accessed by Extreme Ultraviolet Pump-Probe   Experiments,   Phys. Rev. Lett. 113, 073001 (2014).

    50.      K.   Schnorr, A. Senftleben, M. Kurka, A. Rudenko, L. Foucar, G. Schmid, A.   Broska, T. Pfeifer, K. Meyer, D. Anielski, R. Boll, D. Rolles, M. Kübel, M.   F. Kling, Y. H. Jiang, S. Mondal, T. Tachibana, K. Ueda, T. Marchenko, M.   Simon, G. Brenner, R. Treusch, S. Scheit, V. Averbukh, J. Ullrich, C. D.   Schröter, and R. Moshammer, Time-Resolved Measurement of Interatomic Coulombic Decay   in ${\mathrm{Ne}}_{2}$, Phys. Rev. Lett. 111, 093402 (2013).

    51.      M.   Kimura, H. Fukuzawa, T. Tachibana, Y. Ito, S. Mondal, M. Okunishi, M.   Schöffler, J. Williams, Y. Jiang, Y. Tamenori, N. Saito, and K. Ueda, Controlling Low-Energy Electron Emission via   Resonant-Auger-Induced Interatomic Coulombic Decay, J. Phys. Chem. Lett. 4, 1838 (2013).

    52.      Y.   H. Jiang, A. Senftleben, M. Kurka, A. Rudenko, L. Foucar, O. Herrwerth, M. F.   Kling, M. Lezius, J. V. Tilborg, A Belkacem, K. Ueda, D. Rolles, R. Treusch,   Y. Z. Zhang, Y. F. Liu, C. D. Schröter, J. Ullrich, and R. Moshammer, Ultrafast dynamics in acetylene clocked in a femtosecond   XUV stopwatch,   J. Phys. B: At. Mol. Opt. Phys. 46, 164027 (2013).

    53.      K.   Meyer, C. Ott, P. Raith, A. Kaldun, Y. Jiang, A. Senftleben, M. Kurka, R.   Moshammer, J. Ullrich, and T. Pfeifer, Noisy Optical Pulses Enhance the Temporal Resolution of   Pump-Probe Spectroscopy, Phys. Rev. Lett. 108, 098302 (2012).

    54.      Y.   H. Jiang, A. Rudenko, O. Herrwerth, L. Foucar, M. Kurka, K. U. Kühnel, M.   Lezius, M. F. Kling, J. van Tilborg, A. Belkacem, K. Ueda, S. Düsterer, R.   Treusch, C. D. Schröter, R. Moshammer, and J. Ullrich, Ultrafast Extreme Ultraviolet Induced Isomerization of   Acetylene Cations,   Phys. Rev. Lett. 105, 263002 (2010).

    55.      Y.   H. Jiang, A. Rudenko, J. F. Pérez-Torres, O. Herrwerth, L. Foucar, M. Kurka,   K. U. Kühnel, M. Toppin, E. Plésiat, F. Morales, F. Martín, M. Lezius, M. F.   Kling, T. Jahnke, R. Dörner, J. L. Sanz-Vicario, J. van Tilborg, A. Belkacem,   M. Schulz, K. Ueda, T. J. M. Zouros, S. Düsterer, R. Treusch, C. D. Schröter,   R. Moshammer, and J. Ullrich, Investigating two-photon double ionization of   ${\mathrm{D}}_{2}$ by XUV-pump XUV-probe experiments, Phys. Rev. A 81, 051402 (2010).

    56.      Y.   H. Jiang, A. Rudenko, E. Plésiat, L. Foucar, M. Kurka, K. U. Kühnel, T.   Ergler, J. F. Pérez-Torres, F. Martín, O. Herrwerth, M. Lezius, M. F. Kling,   J. Titze, T. Jahnke, R. Dörner, J. L. Sanz-Vicario, M. Schöffler, J. van   Tilborg, A. Belkacem, K. Ueda, T. J. M. Zouros, S. Düsterer, R. Treusch, C.   D. Schröter, R. Moshammer, and J. Ullrich, Tracing direct and sequential two-photon double   ionization of ${\mathrm{D}}_{2}$ in femtosecond extreme-ultraviolet laser   pulses, Phys. Rev.   A 81, 021401 (2010).

    57.      Y.   H. Jiang, T. Pfeifer, A. Rudenko, O. Herrwerth, L. Foucar, M. Kurka, K. U.   Kühnel, M. Lezius, M. F. Kling, X. Liu, K. Ueda, S. Düsterer, R. Treusch, C.   D. Schröter, R. Moshammer, and J. Ullrich, Temporal coherence effects in multiple ionization of   ${N}_{2}$ via XUV pump-probe autocorrelation, Phys. Rev. A 82, 041403 (2010).

    58.      Y.   H. Jiang, A. Rudenko, M. Kurka, K. U. Kühnel, T. Ergler, L. Foucar, M.   Schöffler, S. Schössler, T. Havermeier, M. Smolarski, K. Cole, R. Dörner, S.   Düsterer, R. Treusch, M. Gensch, C. D. Schröter, R. Moshammer, and J.   Ullrich, Few-Photon Multiple Ionization of ${\mathbf{N}}_{2}$ by   Extreme Ultraviolet Free-Electron Laser Radiation, Phys. Rev. Lett. 102, 123002 (2009).

    59.      A.   Rudenko, L. Foucar, M. Kurka, T. Ergler, K. U. Kühnel, Y. H. Jiang, A.   Voitkiv, B. Najjari, A. Kheifets, S. Lüdemann, T. Havermeier, M. Smolarski,   S. Schössler, K. Cole, M. Schöffler, R. Dörner, S. Düsterer, W. Li, B.   Keitel, R. Treusch, M. Gensch, C. D. Schröter, R. Moshammer, and J. Ullrich, Recoil-Ion Momentum Distributions for Two-Photon Double   Ionization of He and Ne by 44 eV Free-Electron Laser Radiation, Phys. Rev. Lett. 101, 073003 (2008).

    60.      Y.   H. Jiang, R. Püttner, D. Delande, M. Martins, and G. Kaindl, Explicit analysis of chaotic behavior in radial and   angular motion in doubly excited helium, Phys. Rev. A 78, 21401 (2008).

    61.      R.   Moshammer, Y. H. Jiang, L. Foucar, A. Rudenko, T. Ergler, C. D. Schröter, S.   Lüdemann, K. Zrost, D. Fischer, J. Titze, T. Jahnke, M. Schöffler, T. Weber,   R. Dörner, T. J. M. Zouros, A. Dorn, T. Ferger, K. U. Kühnel, S. Düsterer, R.   Treusch, P. Radcliffe, E. Plönjes, and J. Ullrich, Few-Photon Multiple Ionization of Ne and Ar by Strong   Free-Electron-Laser Pulses, Phys. Rev. Lett. 98, 203001 (2007).

     


    固定人员


    阎天民

    副研究员

     

    王新成

    副教授


    张逸竹

    天津大学副教授(兼职)


    沈镇捷

    助理研究员


    研究生

    花晓宏

    博士研究生


    江文斌

    博士研究生


    张帅

    博士研究生


    马欢玉

    博士研究生


    阮舒舒

    博士研究生


    赵静静

    博士研究生


    甘子洋

    博士研究生


    陈涛涛

    硕士研究生


    邹智翰

    博士研究生


    董瑞超

    博士研究生


    陈燕歌

    博士研究生


    吕入锦

    博士研究生


    高远

    硕士研究生


    郭玉良

    硕士研究生


    张茗婕

    博士研究生


    高艳君

    博士研究生


    李猛

    硕士研究生


    冯金泽

    硕士研究生



    jiangyh3@shanghaitech.edu.cn
  • 柳学榕教授


    柳学榕,正教授,研究员
    通讯地址:
    电子邮件:liuxr@shanghaitech.edu.cn
    2001年在中国科学技术大学物理系获学士学位,2008年于美国加州大学圣地亚哥分校(UCSD)物理系获博士学位。2009年至2013年在美国布鲁克海文国家实验室(BNL)先后任博士后研究助理和访问学者。2013年至2018年在中国科学院物理研究所任特聘研究员(博士生导师)。2018年加入上海科技大学物质科学与技术学院,2021年加入上海科技大学大科学中心,现任正教授(Tenured,博士生导师)。

    研究介绍

      主要关注电子关联体系里晶格、自旋、电荷以及轨道有序和相变,并利用多种X射线散射手段研究这些行为背后的微观机制。近几年开始探索X射线散射和时间分辨技术相结合,开展电子关联体系非热平衡演化方面的研究,并负责上海SCLF项目时间分辨共振非弹性散射线站的设计和建设。



    招聘信息

    本组主要的研究和发展方向为:


    一,利用共振X射线技术研究电子关联体系中的自旋、电荷和轨道有序相变,并通过相关的动力学激发谱测量探索有序相变的微观机制
    二,利用X射线结构分析技术,解析外延生长薄膜和异质结的精确结构变化,分析注入、掺杂以及其它调控情况下的晶体结构演化
    三,发展飞秒时间尺度的超快X射线测量技术

    我们长期欢迎对应用X射线相关技术研究电子关联体系和功能材料结构有兴趣的博士后和助理研究员加入!有意者可邮件和课题组长联系。



    新闻

    2022.01.11 我组和国际合作组的合作工作“Antiferromagnetic Excitonic Insulator State in Sr3Ir2O7”被Nature Communications接收。


    2021.11.05 我组和国际合作组的单发激光激励自旋有序演化的实验工作在PRX上发表。

    2021.09.10 高精度X射线多功能开放实验平台优化基本完成。

         石英管封装粉末衍射图(30秒/帧)

    2021.09.03 祝贺王瑞塘的工作“Single-Laser-Pulse-Driven Thermal Limit of the Quasi-Two-Dimensional Magnetic Ordering in Sr2IrO4”被PRX接收。

    2021.06.04 自主搭建的高精度X射线多功能开放实验平台完成了精度调节和安全防护检测!

                 

    全自主设计 + 硬件70%以上国产

    2021.05.28 我组和美国合作组的时间分辨超快RIXS实验工作在PNAS上发表。

    2021.04.13 祝贺王瑞塘的工作“ X-ray absorption investigation of the site occupancies of the copper element in nominal Cu3Zn(OH)6FBr”被选为CPB亮点文章。

    2021.01.21.   祝贺李杰明作为第一作者的工作“Unravelling the orbital physics in a canonical orbital system KCuF3”被PRL接收。

    2021.01.15.   祝贺林佳琪作为第一作者的工作“Strong superexchange in a  d9−δ nickelate revealed by resonant inelastic x-ray scattering”被PRL接收。

    2020.11.08. “深圳中能高重频自由电子激光量子材料线站用户专题研讨会”在深圳召开,为时间分辨X射线谱学的广阔美好前景再添重重一笔。

      

    2020.10.23. 和上海光源新建表面散射实验站负责人李晓龙组商定外延薄膜结构分析合作事宜。

    2020.09.01. 欢迎新研究生李翔、李哲通入组。



    实验技术和设备


    X射线实验技术:

    非共振弹性散射(NRXS)

    1. 外延薄膜晶体结构解析

    2. 缺陷、掺杂相关的局域微应力解析

    共振弹性散射(RXS)

    1. 自旋有序结构解

    2. 电荷有序结构解析

    3. 轨道有序结构解析

    共振非弹性散射(RIXS)

    1. 自旋激发      2. 电荷激发     3. 晶格振动激发

    时间分辨X射线散射百飞秒级超快领域中充满想象的未来!

    实验设备:

    国际先进的X射线大科学装置:

    通过聚焦基础科研前沿的实验建议书(proposal),在开放实验平台上和国际同行竞争,申请宝贵的X射线大科学装置实验机时。

    美国阿贡国家实验室先进光源美国斯坦福直线加速自由电子激光美国布鲁克海文国家实验室国家光源II

    法国欧洲同步辐射中心英国钻石光源日本spring-8

    瑞士光源中国上海光源建设中的上海硬线自由电子激光


    实验室设备:

    以最先进Excillum公司的METALJET-D2验室级别X射线源(世界上目前最高亮度的镓铟液态金属靶源)为核心,自主搭建高精度射线多功能开放实验平台,以实现对功能材料在多维度环境调节的工况下的结构演化测量。




    发表文章


    *(共同)第一或(共同)通讯作者

    2022年 

    1*. Antiferromagnetic excitonic insulator state in Sr3Ir2O7, Nat Commun 13, 913 (2022)

    2.Nonthermal breaking of magnetic order via photogenerated spin defects in the spin-orbit coupled insulator Sr3Ir2O7, Phys. Rev. B 105, 064409 (2022)


    2021年 

    1*. Single-laser-pulse-driven thermal limit of the quasi-two-dimentional magnetic ordering in Sr2IrO4, Phys. Rev. X. 11,041023 (2021)

    2*. Laser-induced transient magnons in Sr3Ir2O7 throughout the Brillouin zone, PNAS, 118, e2103696118(2021)

      

    3. X-ray absorption investigation of the site occupancies of the copper element in nominal Cu3Zn(OH)6FBrCPB, 30(4):046102 (2021)

    4. Unraveling the Orbital Physics in a Canonical Orbital System KCuF3, Phys. Rev. Lett. 126, 106401(2021)

    5*. Strong Superexchange in a d9−δ Nickelate Revealed by Resonant Inelastic X-Ray Scattering, Phys. Rev. Lett. 126, 087001(2021)


    2020年 

    1*. Strongly correlated charge density wave in La2-xSrxCuO4 evidenced by doping-dependent phonon anomaly, Phys. Rev. Lett. 124, 207005(2020)

    2*. Doping evolution of the charge excitations and electron correlations in electron-doped superconducting La2-xCexCuO4, npj Quantum Materials, 5, 4 (2020)


    2019年 

    1. Phononic Helical Nodal Lines with PT Protection in MoB2, Phys. Rev. Lett. 123, 245302 (2019)

    2. Epitaxial growth and antiferromagnetism of Sn-substituted perovskite iridate SrIr0.8Sn0.2O3, Phys. Rev. Mat. 3, 124411 (2019)

    3. Optical study on the possible Slater insulator SrIr0.8Sn0.2O3, Phys. Rev. B 100, 045101 (2019)

    4*. Recovery of photoexcited magnetic ordering in Sr2IrO4, J. Phys.: Condens. Matter 31 255801 (2019)

    5*. Direct Detection of Dimer Orbitals in Ba5AlIr2O11, Phys. Rev. Lett. 122, 106401 (2019)

    6. Magnetism in iridate heterostructures leveraged by structural distortions, Scientific Reports 9:4263 (2019)


    2018年 

    l. Utrafast dynamics of spin and orbital correlations in quantum materials: an energy- and momentum-resolved perspective, Invited review for the Philosophical Transactions of the Royal Society A DOI: 10.1098/rsta.2017.0480 (2019)

    2*. Quantitative Characterization of the Nanoscale Local Lattice Strain Induced by Sr Dopants in La1.92Sr0.08CuO4, Phys. Rev. Lett. 120, 197001 (2018)


    2017年 

    1. On the possibility to detect multipolar order in URu2Si2 by the electric quadrupolar transition of resonant elastic x-ray scattering, Phys. Rev. B 96, 085146 (2017)

    2. Doping Dependence of Collective Spin and Orbital Excitations in the Spin-1 Quantum Antiferromagnet La2−xSrxNiO4 Observed by X-Rays, Phys. Rev. Lett. 118, 156402 (2017)

    3*. Giant spin gap and magnon localization in the disordered Heisenberg antiferromagnet Sr2Ir1−xRuxO4, Phys. Rev. B 95, 121103(R) (2017)


    2016年 

      

    1*. Anisotropic softening of magnetic excitations in lightly electron-doped Sr2IrO4, Phys. Rev. B 93, 241102(R) (2016)

    2*. Ultrafast energy- and momentum-resolved dynamics of magnetic correlations in the photo-doped Mott insulator Sr2IrO4, Nature Materials 15, 601 (2016)

    3. Spin-orbit-driven magnetic structure and excitation in the 5d pyrochlore Cd2Os2O7, Nature communications, 7, 11651 (2016)


    2015年

    1. Probing single magnon excitations in Sr2IrO4 using O K-edge resonant inelastic x-ray scattering, Journal of Physics-Condensed Matter, 20, 202202 (2015)


    2014年 

    1. Momentum dependence in K-edge resonant inelastic x-ray scattering and its application to screening dynamics in CE-phase La0.5Sr1.5MnO4, Phys. Rev. B 90, 045111 (2014)

    2. Asymmetric melting and freezing kinetics of the magnetostructural phase transition in B2-ordered FeRh epilayers, Appl. Phys. Lett. 104, 232407 (2014)


    2013年 

    1. Low temperature crystal structure and large lattice discontinuity at Tc in superconducting FeTeOx films, Appl. Phys. Lett. 103, 102604 (2013)

    2*. Ferromagnetic Exchange Anisotropy from Antiferromagnetic Superexchange in the Mixed 3d-5d Transition-Metal Compound Sr3CuIrO6, Phys. Rev. Lett. 111, 057202 (2013)

    3. Persistence of magnetic excitations in La2−xSrxCuO4 from the undoped insulator to the heavily overdoped non-superconducting metal, Nature Materials, 10.1038/nmat3723 (2013)

    4. Avoided quantum criticality and magnetoelastic coupling in BaFe2-xNixAs2, Phys. Rev. Lett. 110, 257001 (2013)

    5. Strongly momentum-dependent screening dynamics in La0.5Sr1.5MnO4 observed with resonant inelastic x-ray scattering, Phys. Rev. B (R) 87, 201103 (2013) 

    6. High-Energy Magnetic Excitations in the Cuprate Superconductor Bi2Sr2CaCu2O8+δ: Towards a Unified Description of Its Electronic and Magnetic Degrees of Freedom, Phys. Rev. Lett. 110, 147001 (2013)

    7. Crystal-field splitting and correlation effect on the electronic structure of A2IrO3, Phys. Rev. Lett. 110, 076402 (2013)


    2012年 

    1*. Testing the validity of the strong spin-orbit-coupling limit for octahedrally coordinated iridate compounds in a model system Sr3CuIrO6, Phys. Rev. Lett. 109, 157401 (2012)

    2. Temperature-dependent transformation of the magnetic excitation spectrum on approaching superconductivity in Fe1+y-x(Ni/Cu)xTe0.5Se0.5, Phys. Rev. Lett. 109, 227002 (2012)

    3. Resonant inelastic x-ray scattering study of charge excitations in superconducting and nonsuperconducting PrFeAsO1−y, Phys. Rev. B 86, 115104 (2012)

    4. Tailoring the FeRh Magnetostructural Response with Au Diffusion, J. Appl. Phys. 112, 043512 (2012)

    5. Magnetically polarized Ir dopant atoms in superconducting Ba(Fe1-xIrx)2As2, Phys. Rev. B 85, 140514 (2012)

    6. Surface melting of electronic order in La0.5Sr1.5MnO4, Phys. Rev. B 84, 165103 (2011) (Editors suggestion)


    2011年 

    1*. Long range magnetic ordering in Na2IrO3, Phys. Rev. B (R) 83, 220403 (2011)

    2*. X-ray diffuse scattering study of Local lattice distortions in Fe1+xTe induced by excess Fe, Phys. Rev. B 83, 184523 (2011)


    2010年前 

    1*. Fermi-surface-induced lattice modulation and charge-density wave in optimally doped YBa2Cu3O7-x, Phys. Rev. B 78, 134526 (2008)

    2. Evidence of modified ferromagnetism at a buried Permalloy/CoO interface at room temperature, Phys. Rev. B 75, 014442 (2007)

    3. Two- and three-dimensional incommensurate modulation in optimally-doped Bi2Sr2CaCu2O8+, Phys. Rev. B 73, 174505 (2006)

    4. High-resolution polarization analysis study of long-range magnetic order in cuprates, Phys. Rev. B 71, 212506 (2005)

    5*. Four-Unit-Cell Superstructure in the Optimally Doped YBa2Cu3O6.92 Superconductor, Phys. Rev. Lett. 93, 157008 (2004)

    6. The theoretical calibration coefficient in the measurement of nonlinear dielectric constant with a scanning tip microwave near-field theory, Acta Physica Sinica, 53, 34 (2003)


    著作 

    Inhomogeneous Lattice modulations and Fermi-Surface Effects in Yttrium Barium Copper Oxide SuperconductorsZ. Islam, X. Liu, S. K. Sinha and S. C. Moss

    Book chapter in Diffuse Scattering and the Fundamental Properties of Materials.

    Editors: R. I. Barabash, G. E. Ice and P. E. A. Turchi, Momentum Press, New Jersey (2009) 





    课题组成员

    李效亭                  

      博士研究生,本科毕业于青岛大学

      

    邮箱: lixt2@shanghaitech.edu.cn             

    尹帅帅                  

      硕士研究生,本科毕业于西安理工大学

      

    邮箱:yinshsh@shanghaitech.edu.cn              

    李翔                  

      硕士研究生,本科毕业于合肥工业大学

      

    邮箱:lixiang@shanghaitech.edu.cn              

    李哲通                  

      硕士研究生

      

    邮箱:lizht@shanghaitech.edu.cn              


    原课题组成员

    李杰民                  

          博士研究生毕业,去往美国布鲁克海文国家实验室国家光源II任博士后

    邮箱:  


    林佳琪                  

      博士研究生毕业,去往西湖大学任博士后

     

    邮箱: jqlin@iphy.ac.cn             

    王瑞塘                  

      博士研究生毕业,去往半导体工业界

      

    邮箱: wangrt@iphy.ac.cn           




    liuxr@shanghaitech.edu.cn
  • 王依宵副教授

    王依宵

    王依宵,副教授,研究员,博导  Yixiao Wang, Tenure-Track Associate Professor

    通讯地址:物质学院8号楼305  SPST8-305

    电子邮箱:wangyx9@shanghaitech.edu.cn

    个人简历

    2005-2009 北京化工大学,学士

    2010-2013 厦门大学,硕士

    2013-2017 荷兰代尔夫特理工大学,博士

    2018-2019 美国能源部爱达荷国家实验室,博士后

    2019-2023 美国能源部爱达荷国家实验室,研究员

    2023-至今上海科技大学,副教授,研究员

    研究介绍

    本课题组的主要研究方向是基于瞬时产物分析技术及其在环境催化和能源催化中的应用。利用瞬时产物分析技术,解析催化反应过程中的微观动力学,表征基元反应步骤,从分子和原子角度研究催化机理。

    本课题组长期诚聘助理研究员、博士后研究员、硕博连读研究生。欢迎对催化,表面化学, 动力学感兴趣的学生学者加入,有意者请邮箱联系:wangyx9@shanghaitech.edu.cn


    发表论文

    1.     Wang,Y., Snyder, S., Catalytic processes to enable decarbonization in a net zero carbon world, ChemSusChem2022, https://doi.org/10.1002/cssc.202201290

    2.     Wang, Y., Sourav, S.,Fushimi, R.R,Deciphering the mechanistic role of individual oxide phases and their combinations in supported Mn-Na2WO4 catalysts for oxidative coupling of methane, ACS Catalysis 2022, 12, 11886-11898

    3.     Wang, Y., Wang, B.,Fushimi, R.R,Mechanistic pathways and role of oxygen in oxidative coupling of methane derived from transient kinetic studies, Catalysis Today, 2022. (In Press)

    4.     S Sourav, D Kiani, Y Wang*, J Baltrusaitis, RR Fushimi, IE Wachs, Molecular structure and catalytic promotional effect of Mn on supported Na2WO4/SiO2 catalysts for oxidative coupling of methane (OCM) reaction, Catalysis Today, 2022. (In Press, corresponding author)

    5.     Wang, Y., Qian J., Fortunelli A., Goddard III W.A. & Fushimi, R. (2021) Understanding Reaction Networks through Controlled Approach to Equilibrium Experiments Using Transient Methods, Journal of the American Chemical Society, 143 (29), 1099811006

    6.     Sourav, S., Wang, Y.*; Kiani, D.; Baltrusaitis, J.; Fushimi, R. R.; Wachs, I. E., (2021) Resolving the Types and Origin of Active Oxygen Species Present in Supported Mn-Na2WO4/SiO2 Catalysts for Oxidative Coupling of Methane. ACS Catalysis, 11(16)10288-10293. (corresponding author)

    7.     Sourav, S., Wang, Y.*, Kiani, D., Baltrusaitis, J., Fushimi, R.R. and Wachs, I..E. (2021), New Mechanistic and Reaction Pathway Insights for Oxidative Coupling of Methane (OCM) over Supported Na2WO4/SiO2 Catalysts. Angew. Chem. Int. Ed. (corresponding author)

    8.      Wang, Y., Yablonsky, G., Fushimi, R.R, Precise composition/kinetic characterization of solid catalysts using temporal analysis of products. Catalysis. 2021. 114-152. (book chapter)

    9.     Wang, Y., Fushimi, R.R, Springer Handbook of Advanced Catalyst Characterization: Temporal Analysis of Product (TAP) (book chapter)

    10.  Wang, Y., Kunz, M. R., Siebers, S., Rollins, H., Gleaves, J., Yablonsky, G., & Fushimi, R. (2019). Transient kinetic experiments within the high conversion domain: The case of ammonia decomposition. Catalysts, 9(1),104.

    11.  Wang, Y., Kunz, M. R., Fang,T., Yablonsky, G., & Fushimi, R. (2019). Accumulation dynamic as a new tool for catalyst discrimination: An example from ammonia decomposition. Industrial & Engineering Chemistry Research. 58 (24), 10238-10248

    12.  Wang, Y., Kunz, M. R., Constales,D., Yablonsky, G., & Fushimi, R. (2019). Rate/Concentration Kinetic Petals from Pulse-Response Transient Studies: Surface Processes Examined from Ammonia Decomposition Experiments. The Journal of Physical Chemistry A 123 (40), 8717-8725

    13.  Wang, Y., & Makkee, M. (2018). Fundamental understanding of the Di-Air system (an alternative NOx abatement technology). I: The difference in reductant pre-treatment of ceria. Applied Catalysis B: Environmental. 223, 125-133.

    14.  Wang, Y., & Makkee, M. (2018). The influence of CO2 on NO reduction to N2 over reduced ceria  based catalyst, Applied Catalysis B: Environmental. 221, 196-205

    15.  Wang, Y., & Makkee, M. (2018). Adverse effects of Potassium on NOx reduction over Di-Air catalyst (Rh/La- Ce-Zr). Applied Catalysis B: Environmental 117895

    16.  Wang, Y., Kapteijn, F., & Makkee, M. (2018). NOx reduction in the Di-Air system over noble metal promoted ceria. Applied Catalysis B: Environmental, 231, 200-212.

    17.  Wang, Y., & Makkee, M. (2018). A new dynamic N2O decomposition system by exploring reduced Rh/ceriazirconia with deposited carbon: from mechanistic insight to principle application. Catalysis Science & Technology 11 (2), 671-680

    18.  Wang, Y., & Makkee, M., (2017). Reaction Mechanism Study of the Di-Air System and Selectivity and Reactivity of NO Reduction in Excess O2. SAE International Journal of Engines, 10(2017-01-0910).

    19.  Wang, Y., Oord, R., van der Berg, D., Weckhuysen,B., & Makkee, M., (2017). Oxygen Vacancies in reduced Rhand Ptceria for Highly Selective and Reactive Reduction of NO into N2 in excess of O2. ChemCatChem. 9(15), 2935-2938.

    20.  Wang, Y., Posthuma de Boer, J., Kapteijn, F., & Makkee, M. (2016). Next Generation Automotive DeNOx Catalysts: Ceria What Else?. ChemCatChem, 8(1), 102-105. (Inside cover)

    21.  Wang, Y., de Boer, J. P., Kapteijn, F., & Makkee, M. (2016). Fundamental Understanding of the Di-Air System: The Role of Ceria in NOx?. Topics in Catalysis, 59(10-12), 854-860.


    wangyx9@shanghaitech.edu.cn
  • 刘小井副教授
    刘小井,副教授
    通讯地址:
    电子邮件:liuxj@shanghaitech.edu.cn 
    1992/9-1996/7,中国科技大学近代物理系本科
    1996/9-2001/6,获中国科技大学原子分子专业博士学位
    2001/7-2004/2, 中国科技大学大学物理学院任讲师
    2004/2-2004/11,中国科技大学大学物理学院任副教授
    2004/12-2008/3,日本东北大学多元物质研究所任博士后
    2008/4-2009/12,日本东北大学多元物质研究所任研究助理教授
    2010/1-2013/6,法国SOLEIL同步辐射实验室任束线科学家
    2013/7-2014/12,上海应用物理研究所任研究员
    2015/1-2017/8,北京航空航天大学物理学院任教授
    2018/9-现在,上海科技大学物质学院常任副教授

    研究介绍

    研究原子、分子和团簇在同步辐射、飞秒激光、自由电子激光下的激发、电离、Auger电子发射和解离等过程。原子分子是化学反应中的最小单元,原子、分子和团簇是研究量子多体问题的理想体系。原则上所有的微观反应过程都可以统一用电子和原子核在不同时空尺度上的运动来表述,但是处于激发态的多尺度量子多体问题求解一直难于得到解决。同步辐射提供能量从几十到几千电子伏的高度单色化的光子,可以精确选择激发态;飞秒激光下时间依赖的强激光场提供了研究动态过程和操控反应过程的手段,而自由电子激光结合了同步辐射和飞秒激光的优点。我们的目标是直接观察微观体系在反应中的电子和原子的实时运动。


    发表文章

    01. Liu, X.J., et al., Disentangling Auger decays in O2 by photoelectron-ion coincidences. Scientific Reports, 2017. 7. 2898

    02. Liu, X.J., C. Nicolas, and C. Miron, In situ correction of the spherical aberration in a double-toroidal electron analyzer. Review of Scientific Instruments, 2017. 88. 023110

    03. Nagaya, K., et al., Femtosecond charge and molecular dynamics of I-containing organic molecules induced by intense X-ray free-electron laser pulses. Faraday Discussions, 2016. 194: p. 537-562.

    04. Liu, X.J., et al., Einstein-Bohr recoiling double-slit gedanken experiment performed at the molecular level. Nature Photonics, 2015. 9: p. 120-125.

    05. Liu, X.J., C. Nicolas, and C. Miron, Design of a lens table for a double toroidal electron spectrometer. Review of Scientific Instruments, 2013. 84. 033105

    06. Fukuzawa, H., et al., Deep Inner-Shell Multiphoton Ionization by Intense X-Ray Free-Electron Laser Pulses. Physical Review Letters, 2013. 110. 173005

    07. Lucchese, R.R., et al., Asymmetry in the molecular-frame photoelectron angular distribution for oxygen 1s photoemission from CO2. Journal of Physics B-Atomic Molecular and Optical Physics, 2012. 45. 194014

    08. Ouchi, T., et al., Three-Electron Interatomic Coulombic Decay from the Inner-Valence Double-Vacancy States in NeAr. Physical Review Letters, 2011. 107. 053401

    09. Liu, X.J., et al., Breakdown of the two-step model in K-shell photoemission and subsequent decay probed by the molecular-frame photoelectron angular distributions of CO2. Physical Review Letters, 2008. 101. 083001

    10. Liu, X.J., et al., Internal inelastic scattering satellite probed by molecular-frame photoelectron angular distributions from CO(2). Physical Review Letters, 2008. 101. 023001


    liuxj@shanghaitech.edu.cn
  • 彭鹏助理教授、研究员

    彭鹏,助理教授、研究员、博导Peng Peng, Tenure-Track Assistant Professor

    通讯地址:物质学院4号楼109室 SPST 4-109

    电子邮件:pengpeng@shanghaitech.edu.cn

    个人简历

    2007-2011 中国科学技术大学,学士 USTC, BS

    2011-2016 中国科学院上海光学精密机械研究所,博士 (导师:李儒新院士、刘鹏研究员)SIOM, PhD

    2016-2020 渥太华大学,博士后 (导师:Prof. Paul Corkum, Prof. David Villeneuve)University of Ottawa, Postdoc

    2021- 上海科技大学,助理教授、研究员 ShanghaiTech University, Assistant Professor/PI




    研究介绍Research



      

    本课题组的主要研究方向是基于高次谐波技术的阿秒脉冲产生及其在分子超快动力学研究中的应用。利用泵浦-探测技术,测量XUVX射线波段的阿秒瞬态吸收光谱,观测及操控原子分子内部电子及原子核的超快运动,包括里德堡态激发、电离、解离、取向等一系列超快分子动力学过程。

    课题组长彭鹏教授入选国家级高层次人才青年项目、上海市领军人才、上海市启明星,担任上海市原子分子与光物理专业委员会委员,Ultrafast Science青年编委。

    We specialize in high harmonic generation, attosecond science, and in the interactions of intense optical and infrared laser pulses and high harmonic radiation with atoms and molecules. We use the attosecond transient absorption technique to study the ultrafast molecular dynamics, including the Rydberg states, dissociation, ionization and alignment.

      


      

      

    本课题组长期诚聘助理研究员、博士后研究员、硕博连读研究生。欢迎对阿秒科学、分子超快动力学感兴趣的学生学者加入!有意者请邮件联系pengpeng@shanghaitech.edu.cn

    Researcher, Postdoc, and Graduate student positions are available in my group. If interested, please contact Peng Peng by email: pengpeng@shanghaitech.edu.cn.



    发表论文Publications




      

    1.   Peng PengYonghao Mi, Marianna Lytova, Mathew Britton, Xiaoyan Ding, A. Yu. Naumov, P. B. Corkum, and D. M. Villeneuve, “Coherent control of ultrafast extreme ultraviolet transient absorption”, Nature Photonics 16, 45-51 (2022).

         上科大网站首页报道:https://www.shanghaitech.edu.cn/2021/1218/c1001a211770/page.htm

    2.    Peng PengClaude Marceau, Marius Hervé, P. B. Corkum, A. Yu. Naumov, and D. M. Villeneuve, “Symmetry of Molecular Rydberg States Revealed by XUV transient absorption spectroscopy”, Nature Communications 10, 5269 (2019).

    3.    Peng Peng, Claude Marceau, and David M. Villeneuve, “Attosecond imaging of molecules using high harmonic spectroscopy”, Nature Reviews Physics 1, 144-155 (2019).

    4.    Peng Peng, Ya Bai, Na Li, and Peng Liu, “Measurement of field-free molecular alignment by Balanced Weak Field Polarization Technique”, AIP Advances 5, 127205   (2015).

    5.   Peng Peng, Shichang Peng, Hongtao Hu, Na Li, Ya Bai, Peng Liu, HuaiLiang Xu, Ruxin Li, and Zhizhan Xu, “Intensity-dependent study of strong-field Coulomb explosion of H2”, Optics Express 23, 18763-18768 (2015).

    6.   Peng Peng, Na Li, Jiawei Li, Hua Yang, Peng Liu, Ruxin Li, and Zhizhan Xu, “Spectral modulation of high-order harmonic generation from prealigned CO2 molecules”, Optics Letters 38, 4872-4875 (2013).

    7.   Yonghao Mi, Peng Peng, Nicolas Camus, Xufei Sun, Patrick Fross, Denhi Martinez, Zack Dube, P. B. Corkum, D. M. Villeneuve, André Staudte, Robert   Moshammer, and Thomas Pfeifer, “Clocking enhanced ionization of hydrogen molecules with rotational wave packets”, Physical Review Letters, 125, 173201 (2020).

    8.   David Villeneuve, Peng Peng, Hiromichi NiikuraComplete characterization of attosecond photoelectron wave, Physical Review A 104, 053526 (2021).

    9.    Nicola Mayer, Peng Peng, David M Villeneuve, Serguei Patchkovskii, Misha Ivanov, Oleg Kornilov, Marc J J Vrakking, and Hiromichi Niikura, “Population transfer to high angular momentum states in infrared-assisted XUV photoionization of helium”, Journal of Physics B: Atomic, Molecular and Optical Physics 53, 164003 (2020).

    10.   C. Marceau, J. B. Bertrand, Peng Peng, H. J. Wörner, P. B. Corkum, and D. M. Villeneuve, “Simultaneous measurements of strong-field ionization and high harmonic generation in aligned molecules”, Journal of Physics B: Atomic, Molecular and Optical Physics 53, 084006 (2020).

    11.   Claude Marceau, Varun Makhija, Peng Peng, Marius Hervé, P. B. Corkum, A. Yu. Naumov, A. Stolow, and D. M. Villeneuve, “Non-Born-Oppenheimer electronic wave packet in molecular nitrogen at 14 eV probed by time-resolved photoelectron spectroscopy”, Physical Review A 99, 023426 (2019).

    12.  Mathew Britton, Marianna Lytova, Patrick Laferrière, Peng Peng, Felipe Morales, Dong Hyuk Ko, Maria Richter, Pavel Polynkin, D. M. Villeneuve,   Chunmei Zhang, Misha Ivanov, Michael Spanner, Ladan Arissian, and P. B.   Corkum, “Short- and long-term gain dynamics in N2+ air lasing”, Physical Review A 100, 013406 (2019).

    13.  Mathew Britton, Marianna Lytova, Dong Hyuk Ko, Abdulaziz Alqasem, Peng Peng, D. M. Villeneuve, Chunmei Zhang, Ladan Arissian, and P. B. Corkum, “Control of N2+ air lasing”, Physical Review A 102, 053110 (2020).

    14.  Rongjie Xu, Ya Bai, Liwei Song, Na Li, Peng Peng, Jie Tang, Tianshi Miao, Peng   Liu, Zhanshan Wang, and Ruxin Li, “Self-focusing of few-cycle laser pulses at 1800nm in air”, Journal of Physics B: Atomic, Molecular and Optical   Physics 48, 094015 (2015).

    15.  Rongjie Xu, Ya Bai, Liwei Song, Na Li, Peng Peng, and Peng Liu, “Terahertz emission by balanced nonlinear effects in air plasma”, Chinese Optics Letters 11, 123002 (2013).




    本组成员Group Members





    邹晓

    访问学者




    蒋延荣

    博士后

    华东师范大学博士



    孙铭泽

    21级硕士研究生

    河南师范大学学士

    sunmz1@shanghaitech.edu.cn


    姜紫翔

    21级硕士研究生

    苏州大学学士

    jiangzx@shanghaitech.edu.cn


    pengpeng@shanghaitech.edu.cn
  • 王涵助理教授、研究员

    王涵课题组介绍

    课题组长  研究介绍  发表论文  本组成员



    王涵,助理教授、研究员、博导

    通讯地址:物质学院8号楼305 | SPST 8-305

    电子邮件:wanghan3@shanghaitech.edu.cn 

    个人简历

    2007-2011   吉林大学学士|Jilin University, BS

    2011-2017   美国伦斯勒理工博士 (导师:Prof. Shengbai Zhang 张绳百教授)|Rensselaer Polytechnic Institute (RPI), PhD

    2018-2021   劳伦斯伯克利国家实验室博士后(导师:Dr. David Prendergast|Lawrence Berkeley National Laboratory (Berkeley Lab), Postdoc

    2021-2022   SUNCAT, SLAC国家加速器实验室助理研究员|SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Research Associate

    2022-   上海科技大学助理教授、研究员|ShanghaiTech University, Assistant Professor/PI



    本课题组的主要研究方向为开发、应用第一性原理计算方法及机器学习方法研究阿秒 (as)到皮秒(ps)时间尺度的激发态超快动力学过程,建立可以描述分子和固体材料中的电子和原子超快过程的“分子电影”。同时开发X射线光谱的模拟方法,结合X射线自由电子激光装置的实验结果,理论研究半导体材料和金属材料在催化反应、光致相变等物理化学变化中相关的超快过程。 

    课题组长王涵教授已入选上海市领军人才项目。 

    本课题组长期诚聘助理研究员、博士后研究员、硕博连读研究生。欢迎具有物理、化学、材料等相关专业背景对第一性原理计算、材料激发态动力学理论或X射线光谱模拟理论感兴趣的学生学者加入!同时也欢迎感兴趣的本科生参与到我们的科研工作中来!有意者请邮件联系wanghan3@shanghaitech.edu.cn 


    1.    H. Wang, J. Bang, Y.Y. Sun, L. Liang, D. West, V. Meunier, and S. Zhang, The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures, Nature Commun. 7, 11504 (2016).   

    2.     H. Wang, M. Odelius, D. Prendergast, A combined multi-reference pump-probe simulation method with application to XUV signatures of ultrafast methyl iodide photodissociation, J. Chem. Phys. 151, 124106 (2019).

    3.     G. Su*, H. Wang* (共同一作), B. Barnett, J. Long, D. Prendergast, and W. S. Drisdell, Backbonding Contributions to Small Molecule Chemisorption in a Metal–Organic Framework with Open Copper(I) Centers, Chem. Sci. 12, 2156 (2021). (第一理论作者)

    4.     J. Ma*, H. Wang(共同一作), S. Nie*, C. Yi, Y. Xu, H. Li, J. Jandke, W. Wulfhekel, Y. Huang, D. West, P. Richard, A. Chikina, V.N. Strocov, J. Mesot, H. Weng, S. Zhang, Y. Shi, T. Qian, M. Shi, and H. Ding, Emergence of nontrivial lowenergy Dirac fermions in antiferromagnetic EuCd2As2Adv. Mater. 32, 1907565 (2020). (第一理论作者)

    5.      J. Chai*, Z. Shao*, H. Wang* (共同一作), C. Ming, W. Oh, T. Ye, Y. Zhang, X. Cao, P. Jin, S. Zhang, and Y.Y. Sun, Ultrafast processes in photochromic material YHxOy studied by excited-state density functional theory simulation, Sci. China Mater. 63, 1579 (2020).

    6.     S. Lei*, H. Wang* (共同一作), L. Huang, Y.Y. Sun, and S. Zhang, Stacking fault enriching the electronic and transport properties of few-layer phosphorenes and black phosphorus, Nano Lett. 16, 1317 (2016).

    7.    H. WangZ. Qiu, W. Xia, C. Ming, Y. Han, L. Cao, J. Lu, P. Zhang, S. Zhang, H. Xu, and Y.Y. Sun, Semimetal or semiconductor: the nature of high intrinsic electrical conductivity in TiS2J. Phys. Chem. Lett. 10, 6996 (2019).

    8.     Y. Li*, T. Wang*, H. Wang(共同一作), Z. Li, Y. Chen, D. West, R. Sankar, R. Ulaganathan, F. Chou, C. Wetzel, C. Xu, S. Zhang, S. Shi, Enhanced light emission from the ridge of two-dimensional InSe flakes, Nano Lett. 18, 5078 (2018). (第一理论作者)

    9.     M. Guo, X. Liang, H. Wang(通信作者), and J. ZhangMagnetic anisotropy of iridium dimer on two-dimensional materials, Phys. Chem. Chem. Phys. 22, 238 (2020).

    10.  K. Cheng, M. Wang, S. Wang, N. Liu, J. Xu, H. Wang(通信作者), and Y. Su, Monolayer Sc2CF2 as a Potential Selective and Sensitive NO2 Sensor: Insight from First-Principles Calculations, ACS Omega 7, 9267 (2022).

    11.  H. Ogasawara, H. Wang, J. Gladh, A. Gallo, R. Page, J. Voss, A. Luntz, E. Diesen, F. Abild-Pedersen, A. Nilsson, M. Soldemo, M. Zajac, A. Attar, M. E. Chen, S. W. Cho, A. Katoch, K.-J. Kim, K. H. Kim, M. Kim, S. Kwon, S. H. Park, H. Ribeiro, S. Sainio, H.-Y. Wang, C. Yang, and T. Heinz, X-Ray Free Electron Laser Studies of Electron and Phonon Dynamics of Graphene Adsorbed on Copper, Phys. Rev. Mater. 7, 24005 (2023).

    12.  C. Ming, H. Wang, D. West, S. Zhang, and Y. Y. Sun, Defect Tolerance in CsPbI3: Reconstruction of the Potential Energy Landscape and Band Degeneracy in Spin-Orbit Coupling, J. Mater. Chem. A 10, 3018 (2022).

    13.  X. Wu, C. Ming, W. Gao, J. Shi, K. Zhao, H. Wang, and Y. Y. Sun, Effect of Liquidlike Cations on Electronic and Defect Properties of Solid Solutions of Cu2Te and Ag2Te, Phys. Rev. B 105, 1 (2022).

    14.  J. H. Ma, C. Needham, H. Wang, A. Neureuther, D. Prendergast, and P. Naulleau, Mechanistic Advantages of Organotin Molecular EUV Photoresists, ACS Appl. Mater. Interfaces 14, 5514 (2022).

    15.  X. Wu, C. Ming, J. Shi, H. Wang, D. West, S. Zhang, and Y.-Y. Sun, Defects in Statically Unstable Solids: The Case for Cubic Perovskite α-CsPbI3Chinese Phys. Lett. 39, 46101 (2022).

    16.  K. F. Chang, H. Wang, S. M. Poullain, J. González-Vázquez, L. Bañares, D. Prendergast, D. M. Neumark, and S. R. Leone, Conical Intersection and Coherent Vibrational Dynamics in Alkyl Iodides Captured by Attosecond Transient Absorption Spectroscopy, J. Chem. Phys. 156, 114304 (2022).

    17.  M. Ge, H. Wang, J. Wu, C. Si, J. Zhang, and S. Zhang, Enhanced Valley Splitting of WSe2 in Twisted van Der Waals WSe2/CrI3 Heterostructures, npj Comput. Mater. 8, 32 (2022).

    18.  R. Besse, H. Wang, D. West, J. L. F. Da Silva, and S. Zhang, Prediction of Effective Photoelectron and Hole Separation in Type-I MoS2/PtSe2 van der Waals Junction, J. Phys. Chem. Lett. 13, 6407 (2022).

    19.  K. F. Chang, H. Wang, S. M. Poullain, D. Prendergast, D. M. Neumark, and S. R. Leone, Mapping Wave Packet Bifurcation at a Conical Intersection in CH3I by Attosecond XUV Transient Absorption Spectroscopy, J. Chem. Phys. 154, 234301 (2021).

    20.  K. Chang, M. Reduzzi, H. Wang, S. Poullain, Y. Kobayashi, L. Barreau, D. Prendergast, D. Neumark, and S. Leone, Revealing electronic state-switching at conical intersections in alkyl iodides by ultrafast XUV transient absorption spectroscopy, Nat. Commun. 11, 4042 (2020).

    21.  K. Cheng, H. Wang, J. Bang, D. West, J. Zhao and S. Zhang, Carrier Dynamics and Transfer across the CdS/MoS2 Interface upon Optical Excitation, J. Phys. Chem. Lett., 11, 6544 (2020).

    22.  J. Ma, H. Wang, D. Prendergast, A. Neureuther, and P. Naulleau, Excitation Selectivity in Model Tin-Oxo Resist: A Computational Chemistry Perspective, in Extreme Ultraviolet (EUV) Lithography XI, edited by N. M. Felix and A. Lio, SPIE, 11323, 349–355 (2020).

    23.  C. Si, D. Choe, W. Xie, H. Wang, Z. Sun, J. Bang, and S. Zhang, Photoinduced vacancy ordering and phase transition in MoTe2Nano Lett. 19, 3612 (2019).

    24.  J. Ma, H. Wang, D. Prendergast, A. Neureuther, and P. Naulleau, Investigating EUV radiation chemistry with first principles quantum chemistry calculations. Proc.SPIE 11147, (2019).

    25.  B.W. Toulson, M. Borgwardt, H. Wang, F. Lackner, A.S. Chatterley, C.D. Pemmaraju, D.M. Neumark, S.R. Leone, D. Prendergast, and O. Gessner, Probing ultrafast C–Br bond fission in the UV photochemistry of bromoform with core-to-valence transient absorption spectroscopy, Struct. Dyn. 6, 54304 (2019).

    26.  M. Ge, Y. Su, H. Wang, G. Yang, and J. Zhang, Interface depended electronic and magnetic properties of vertical CrI3/WSe2 heterostructures, RSC Adv. 9, 14766 (2019).

    27.  C. Zhong, Y. Chen, Z.-M. Yu, Y. Xie, H. Wang, S.A. Yang, and S. Zhang, Three-dimensional pentagon carbon with a genesis of emergent fermions, Nature Commun. 8, 15641 (2017).

    28.  Q. Peng, X. Sun, H. Wang, Y. Yang, X. Wen, C. Huang, S. Liu, and S. De, Theoretical prediction of a graphene-like structure of indium nitride: A promising excellent material for optoelectronics, Appl. Mater. Today 7, 169 (2017).

    29.  Y. Chen, Y.Y. Sun, H. Wang, D. West, Y. Xie, J. Zhong, V. Meunier, M.L. Cohen, and S. Zhang, Carbon kagome lattice and orbital-frustration-induced metal-insulator transition for optoelectronics, Phys. Rev. Lett. 113, 85501 (2014).

    30.  D. West, Y.Y. Sun, H. Wang, J. Bang, and S. Zhang, Native defects in second-generation topological insulators: Effect of spin-orbit interaction on Bi2Se3Phys. Rev. B 86, 121201 (2012).



    本组成员





     周坤  硕士研究生    

     2022级

    zhoukun2022@shanghaitech.edu.cn 

      

    ————————————

     戴晟  硕士研究生    

     2022级

    daisheng@shanghaitech.edu.cn

    ————————————

    李靖斌  硕士研究生    

    2022级

    lijb2022@shanghaitech.edu.cn

    ————————————

    李祯辉  上海应物所访问博士生    

    2021级

    lizhenhui@sinap.ac.cn

    ————————————

    王者风  本科生研究助理    

    2022级

    2911544726@qq.com

    ————————————





    wanghan3@shanghaitech.edu.cn
  • 李洪杰助理教授、研究员

    学习和工作经历

    2011-2015 吉林大学,学士

    2016-2021 日本兵库县立大学,博士

    2021-2024 日本冈山大学,博士后

    2024.07-至今 上海科技大学,助理教授,研究员

     

    研究介绍

    研究方向:

    时间分辨串行飞秒晶体学(Time-resolved serial femtosecond XFEL method, TR-SFX),蛋白质动态结构变化,分子电影

    研究内容:

    了解蛋白质的三维结构是理解其在生物体内发挥功能的基础。近年来,大量的蛋白质结构通过X射线衍射晶体学(X-ray crystallography)和单粒子冷冻电镜(single partile analysis by cryo-electron microscopy, SPA cryo-EM)方法得到解析,AlphaFold的出现和进化更使我们可以不通过实验就可以知道大多数蛋白质的静态结构,这些结构为我们深入了解蛋白质功能提供了重要的线索。然而,在蛋白质功能执行过程中,常表现出复杂的动态变化。而这些动态过程目前仍难以通过X射线衍射晶体学和单粒子冷冻电镜直接揭示。时间分辨串行飞秒晶体学(Time-resolved serial femtosecond XFEL method, TR-SFX)利用XFELs和精密的泵浦-探测(pump-probe)技术,为研究生物大分子的动态结构提供了一种革命性的实验方法(见图 1)。在此技术中,蛋白质微晶体在真空或与高粘度润滑油混合后垂直输出,与水平射出的XFELs交叉,在微晶到达XFELs衍射位置之前,利用激光照射晶体启动反应后,就可以利用XFELs检测反应中间态的结构。此技术特别适用于研究光敏蛋白,其中特定波长的激光作为泵浦源激发样品,XFELs随后作为探测源捕捉结构变化。通过调整泵浦与探测脉冲之间的延迟时间,我们能够在化学反应的不同阶段捕获分子结构的瞬间状态,延迟时间可精确到亚皮秒至毫秒级,使我们可以观察从化学键断裂到底物结合以及复杂催化事件的动态过程。每个时间点的数据分析后将得到该时间点的结构


    图 1.利用XFELs的泵浦-探测时间分辨串行飞秒晶体学方法示意图

     

    本课题组长期招聘助理研究员和博士后研究员,欢迎有意者发送邮件至我的邮箱lihj1@shanghaitech.edu.cn。此外,课题组诚邀生命学院和物质学院化学学科的研究生加入,有意者请同样发送邮件联系我。更多详情,请访问课题组网站:hongjie-lab.com。

     

    发表论文:

    H. Li*, Y. Nakajima*, E. Nango, S. Owada, D. Yamada, K. Hashimoto, F. Luo, R. Tanaka, F. Akita, K. Kato, J. Kang, Y. Saitoh, S. Kishi, H. Yu, N. Matsubara, H. Fujii, M. Sugahara, M. Suzuki, T. Masuda, T. Kimura, T. N. Thao, S. Yonekura, L.-J. Yu, T. Tosha, K. Tono, Y. Joti, T. Hatsui, M. Yabashi, M. Kubo, S. Iwata, H. Isobe, K. Yamaguchi, M. Suga#, and J.-R. Shen#, Oxygen-evolving photosystem II structures during S1–S2–S3 transitions. Nature626, 670–677 (2024).

    X. Liu*, P. Liu*, H. Li*, Z. Xu*, L. Jia, Y. Xia, M. Yu, W. Tang, X. Zhu, C. Chen, Y. Zhang, E. Nango, R. Tanaka, F. Luo, K. Kato, Y. Nakajima, S. Kishi, H. Yu, N. Matsubara, S. Owada, K. Tono, S. Iwata, L.-J. Yu#, J.-R. Shen#, and J. Wang#, Excited state intermediates in a designer protein encoding a phototrigger caught by XFEL. Nature Chemistry 14, 1054–1060 (2022).

    H. Li*, Y. Nakajima*, T. Nomura, M. Sugahara, S. Yonekura, S. K. Chan, T. Nakane, T. Yamane, Y. Umena, M. Suzuki, T. Masuda, T. Motomura, H. Naitow, Y. Matsuura, T. Kimura, K. Tono, S. Owada, Y. Joti, R. Tanaka, E. Nango, F. Akita, M. Kubo, S. Iwata, J.-R. Shen#, and M. Suga#, Capturing structural changes of the S1 to S2 transition of photosystem II using time-resolved serial femtosecond crystallography. IUCrJ 8, 431-443 (2021).

    M. Suga*, F. Akita*, K. Yamashita, Y. Nakajima, G. Ueno, H. Li, T. Yamane, K. Hirata, Y. Umena, S. Yonekura, L.-J. Yu, H. Murakami, T. Nomura, T. Kimura, M. Kubo, S. Baba, T. Kumasaka, K. Tono, M. Yabashi, H. Isobe, K. Yamaguchi, M. Yamamoto, H. Ago, and J.-R. Shen#, An oxyl/oxo mechanism for oxygen-oxygen coupling in PSII revealed by an x-ray free-electron laser. Science 366, 334-338 (2019).


    lihj1@shanghaitech.edu.cn